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ABSTRACT 

Fatigue strain - life prediction model depends on six material fatigue parameters, fatigue 

strength coefficient 𝜎𝑓
′, fatigue strength exponent b, fatigue ductility coefficient 𝜀𝑓

′ , 

fatigue ductility exponent c, cyclic strength coefficient 𝐾′, and cyclic strain hardening 

exponent 𝑛′. 

In this study, a new nonlinear correlation between the Brinell hardness HB and ultimate 

tensile strength is proposed. The prediction results obtained from this model were 

compared with the results obtained using Roessle-Fatemi’s method and experimental data. 

The correlation factor in the proposed model is higher than that found in the current 

literature. 

The ultimate tensile strength is replaced by an equivalent Brinell hardness HB expression 

in the Modified Universal Slopes strain-life prediction model. This change results in  𝜎𝑓
′ 

and 𝜀𝑓
′  fatigue parameters these parameters predicted using Brinell hardness HB. The new 

fatigue life prediction model was compared with the original Modified Universal Slopes 

model, and experimental data in the literature. 

This model is valid for steels with hardness that ranges from 150HB to 660HB. The model 

is compared qualitatively and quantitatively with the Modified Universal Slopes life fatigue 

prediction model and experimental data. Different types of steels were employed to 

validate this model. The results show that the proposed model provides better fatigue life 

prediction when compared to the Modified Universal Slopes model, and experimental data. 

An accurate prediction of elasto-plastic cyclic deformation becomes extremely important 

in design optimization by providing accurate fatigue life prediction and that results in 

weight savings. Notch root stress-strain prediction is controlled by the two material 

parameters 𝐾′ and 𝑛′ .In this study a two-stage notch root prediction method is proposed. 

This was implemented using a correction factor to Neuber’s rule notch strain amplitude as 

the first stage, and a linear interpolation scheme, between the results obtained from the first 

stage and elastic finite element analysis, as the second stage. The accuracy of this method 

is assessed by comparing the predicted results with the results obtained from elasto-plastic 

finite element analysis and Neuber’s rule results. Various steels with different yield 

strengths were used in this study. Notch deformation behavior under cyclic fully reversed 
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as well as variable amplitude loading conditions was monitored for a double notched flat 

plate and a circumferentially notched round bar to cover plane stress and plane strain 

conditions. Elastic as well as elasto-plastic finite element analyses were performed. Notch 

strain amplitudes in addition to fatigue life predictions obtained using the proposed method 

are in good agreement with the elasto-plastic finite element analysis when compared to 

predictions obtained using Neuber’s rule. ABAQUS 6.13 software was used for elastic and 

elasto-plastic finite element analysis. Analytical methods together with fe-safe 6.5 software 

were used to obtain fatigue life under each loading condition.  
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1. INTRODUCTION 

 FATIGUE  

 

Fatigue is defined as a material failure under cyclic loading. At least half of all mechanical 

failures are due to fatigue. Estimates state that 50 to 90 percent of all mechanical failures 

are fatigue failures; most of these failures are unexpected [1]. Fatigue failures usually 

happen with little or no warning.  

The American Society for Testing and Materials (ASTM), define fatigue as the 

progressive, localized, and permanent structural change that occurs in a material subjected 

to repeated or fluctuating strain at nominal stresses with maximum values less than the 

tensile strength of the material [1]. For fatigue to occur a cyclic plastic deformation should 

occur at stress concentration regions where the stress is greater than the material tensile 

strength despite the nominal stress still in the elastic region. 

The yield point in the stress-strain curve is defined as the point at which plastic deformation 

occurs and Hook’s law no longer holds true. The yield criterion is defined as the elastic 

limit of elasticity under a combination of stresses. For some materials the yield point is not 

easily defined, in such cases, the offset method is used; this method is based on using a 

0.2% strain (.002in/in), a line parallel to the initial straight-line portion of stress-strain 

curve is drawn, the yield point is the point where this line intersect the curve, the stress at 

this point of intersection is called the yield strength of material. An increase in stress past 

the yield point results in a curve that rises continuously but becomes flatter until it reaches 

a maximum stress referred to as the ultimate stress, u. the rise in the curve in this manner 

is called strain hardening of the material [2].  

Total engineering strain () is a combination of the two components: elastic strain, e = /E, 

and plastic strain p. Figure 1, shows schematic of elastic and plastic strain curve 
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Figure 1 Elastic, Plastic and Total Strain [1] 

The relationship between true plastic stress as a function of true plastic strain is a power 

function equation given by: 

 𝜎 = 𝐾(𝜀𝑝)
𝑛

 (1) 

 

Where (k) and (n) are the strength coefficient and strain hardening exponent of the 

material respectively. 

A plot of true plastic stress versus true plastic strain on a log-log scale results in a linear 

curve shown in Figure 2 for 11V41 steel. 
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Figure 2 True Stress vs True Strain for 11V41 Steel [1]. 

 

Combining elastic and plastic true strain equations results in the total strain equation given 

by: 

 

 𝜀 = 𝜀𝑒 + 𝜀𝑝 =
𝜎

𝐸
+ (

𝜎

𝐾
)

1
𝑛

 (2) 

 

 

 

The value of (n) represents the ability of the material to work harden and ranges from 0 to 

0.5 for steels. 

 HARDNESS 

Hardness is defined as the resistance of solid material to a permanent shape change when 

pressure is applied on its surface. Hardness depends generally on many material properties 

such as, ductility, strength, toughness, and plasticity. 

Three types of measurements are commonly used for hardness, Scratch hardness, 

Indentation hardness and Rebound hardness. 

a) Scratch hardness, is the measure of the resistance of the material surface to fracture 

due to friction of a sharp object. 
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b) Rebound hardness, sometimes called ‘dynamic hardness’ measure the height of the 

“bound” of a diamond-tipped hammer dropped from a fixed height on to the 

material surface.  

c) Indentation hardness is the resistance of a material surface to a constant 

compression load. The test is based on measuring of indentation left by a 

specifically dimensioned indenter. There are four common indentation hardness 

scales, Rockwell, Shore, Vickers and Brinell. 

  Brinell hardness scale was proposed by Swedish engineer Johan August Brinell in 1900. 

The typical test is based on using 10 mm diameter steel ball with 3000 kgf.  

The Brinell hardness calculations is calculated using the equation: 

 

 𝐵𝐻𝑁 =
2𝑃

𝜋𝐷(𝐷 − √𝐷2 − 𝑑2)
 (3) 

Where: 

P = applied force (kgf) 

D = diameter of indenter (mm) 

d = diameter of indentation (mm) 

 

 Figure 3 shows the geometrics and specifications for hardness testing. 
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Figure 3 Formulas and the Indentation Geometry of Brinell Hardness [3]. 
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 STRESS- STRAIN BEHAVIOR UNDER CYCLIC DEFORMATION 

 

The stress-strain behavior under a monotonic test is different from the behavior under 

cyclic test. This difference was observed by Bauschinger in 1886. He discovered that the 

yield strength in tension or compression is reduced after applying a load of opposite sign 

which cause inelastic deformation. 

This can be clearly seen in Figure 4, where the yield strength in compression is significantly 

reduced prior yielding in tension [1]. 

Morrow [4] carried out tests on three copper specimens heat treated as: (a) fully annealed 

condition (b) partially annealed, and (c) cold worked (hardened). In each case the stress-

strain curve is continuously monitored during cyclic strain- controlled testing, as shown in 

Figure 5. The hysteresis loops started with a monotonic tensile stress-strain solid curve 

from the origin to the first reversal, the last hysteresis loop is also represented by a solid 

line. The remaining curves represent the change in the stress-strain curves during plastic 

cyclic straining. The fully annealed (soft) specimen (a) is cyclically hardened where the 

stress range is increased to reach the constant amplitude strain range. On the other hand, 

the cold worked specimen (c) is cyclically softened which appear a stress decrease. The 

partially annealed specimen (b) initially appears cyclic hardening followed by cyclic 

softening behavior. The cyclic hardening or softening is related to the density, movement 

and arrangement of the dislocation.  
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Figure 4 Representation of Bauschinger Effect (a) Specimen under Tension (b) Specimen 

under Compression (c) Tension Followed by Compression. 

 

 

Figure 5 Stress-Strain Relationship for Copper under Cyclic Strain-Controlled Axial 

Load (a) Fully Annealed (b) Partially Annealed (c) Cold Worked [1]. 
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A representation of cyclic hardening or softening behavior under a condition of strain-

controlled testing can be done by plotting of stress variation as a function of the number 

of cycles, as shown in Figure 6. In the case of cyclic hardening the resistance to 

deformation increases as the number of cycles increases (Figure 6a), the opposite occurs 

in the case of cyclic softening where the resistance to deformation decreases by 

increasing the number of cycles, (Figure 6b). 

 

 

(a)                                                        (b) 

Figure 6 Variation of Stress under Constant Strain Amplitude (a) Cyclic Hardening 

Condition (b) Cyclic Softening Condition 

 

Usually within 10 to 40 percent of the total fatigue life the stress variation reaches a state 

of cyclic stabilization which is referred to as “cyclic transient behavior” it is often a 

hysteresis loop at half of fatigue life chosen which represent the steady-state cyclic stress-

strain behavior of the material. Figure 7 shows the stable cyclic stress-strain hysteresis 

loop. 

The relationship between total true strain Δɛ, true stress range Δ, elastic strain range Δɛe, 

and plastic true strain range Δɛp, is given by the equation: 

 ∆𝜀 = ∆𝜀𝑒 + ∆𝜀𝑝 =
∆𝜎

𝐸
+ ∆𝜀𝑝 

 

(4) 

 



www.manaraa.com

9 

 

The difference between true and engineering strain values is usually negligible since the 

strain levels during the cyclic loading are below 2 percent. These values are much lower 

than the strain values in the case of monotonic loading. 

In order to obtain a cyclic stress-strain curve for a given material a family of hysteresis 

loops can be connected as shown in Figure 8 for (Man-Ten steel). 

 

 

 

 

Figure 7 Stabilized Cyclic Stress-Strain Hysteresis Loop 
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Figure 8 Stable hysteresis loop for determining the cyclic stress-strain curve and 

comparison with the monotonic stress-strain curve for Man-Ten steel [1]. 

Langraf, Morrow, and Endo [5] presented the monotonic and cyclic stress-strain curves for 

different materials including softening and hardening. They demonstrated that soft 

materials tends to harden under cyclic loading whereas hard materials have an opposite 

behavior. They tend to soften under cyclic loading, as shown in Figure 9. 

 

 
Figure 9 Cyclic and Monotonic Stress-Strain Curves for Different Materials [5] 
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A plot of plastic stress amplitude, Δ/2, versus plastic strain amplitude, Δɛp/2, in a log-log 

scale results in the relationship: 

 

 𝜎𝑎 = 𝐾′ (
∆𝜀𝑝

2
)
𝑛′

 (5) 

 

Where 𝐾′
 and 𝑛′ are the cyclic strength coefficient and cyclic strain hardening exponent, 

respectively. Eq. (5) can be written in a different form using Eq. (4) as: 

 

 𝜀𝑎 =
∆𝜀

2
=

∆𝜀𝑒

2
+

∆𝜀𝑝

2
=

∆𝜎

2𝐸
+ (

∆𝜎

2𝐾′
)

1
𝑛′⁄

=
𝜎𝑎

𝐸
+ (

𝜎𝑎

𝐾′
)
1

𝑛′⁄

 (6) 

 

 

The range of 𝑛′ values is smaller than for monotonic it ranges from .05 to .25 for most of 

metals. The value for cyclic yield strength is often defined at 0.2 percent strain offset of 

plastic strain amplitude. 

 FATIGUE TESTS 

1.4.1 Fatigue loading 

Structures and components are usually subjected to alternating load histories which are 

sometimes simple and repetitive. However, in most cases these histories are completely 

random and may contain high loading peaks that exceed the elastic limit of the material. 

To understand material fatigue behavior and its properties, it is convenient to start with a 

constant amplitude loading. Some real-life load histories can be modeled as constant 

amplitude. 

R = Smin/Smax, is called stress ratio and is commonly used as a test condition to obtain 

fatigue properties, When Smin equal -Smax , R = -1 this condition is called “ fully reversed” 

condition. In the case where Smin = 0 this condition is called “pulsating tension”. In fatigue 

studies it is convenient to use reversal instead of a complete cycle, in which case one cycle 

equals two reversals. Description of fatigue testing and loading is shown in appendix C. 
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 STRESS-LIFE (S-N) APPROACH 

The stress-life method is the oldest approach used to understand and quantify behavior of 

metal fatigue. This method is used when the elastic strain is dominant and no significant 

plastic strain is encountered 

A plot of alternating stress, Sa versus number of cycles to failure, Nf in a log-log scale 

results in a diagram called Wholer or S-N diagram shown in Figure 10.  

 

 

Figure 10 Typical S-N Diagram 

The main disadvantage of this method is that it does not include the true stress-strain 

behavior and considers all strains as elastic strains, the crack initiation is usually occurs 

under plastic deformation state. 

When the S-N data is plotted on a log-log scale, the actual line represents the mean data. 

Most body center cubic (BCC) crystal structure materials (Steel) show a discontinuity or 

“knee” indicated as point a in the S-N curve, the nominal stress at knee point is defined as 

fatigue strength or fatigue limit, below this point the material has infinite number of cycles 

to failure. This knee is between 106 and 107 cycles under noncorrosive environment. In 

general, most materials do not have a knee.  

a 
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Fatigue typically consists of three stages, crack nucleation, crack growth, and final fracture. 

Figure 10, does not facilitate between these stages its gives only the total fatigue life. There 

are certain general empirical relationships between the fatigue properties of steel and the 

less expensively monotonic tension and hardness properties [6].   

There is a ratio called “fatigue ratio (Sf/Su)” this ratio ranges from 0.35 to 0.6. For most 

steels with a tensile strength below 1400 MPa (200 ksi) the fatigue ratio is 0.5. Carbide 

inclusions formed during the tempering of martensitic steels with an ultimate tensile 

strength of more than 1400 MPa (200 ksi) becomes a source of crack initiation points and 

effectively reduces the fatigue limit. The fatigue limit for these materials is approximated 

by a constant value of 700 MPa (100 ksi), this behavior is shown in Figure 11, where the 

ultimate tensile strength is plotted versus the endurance limit. 

For steels the ultimate tensile strength (Su) can be approximated using Brinell hardness 

(HB) given by Eq. (7): 

 

 

 
Su  3.45HB   MPa (200 ksi) 

 
(7) 

 

Figure 11  Relation between Rotating Bending Endurance Limit and Tensile Strength of 

Wrought Steel [6]. 
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1.5.1 Mean Stress Effect on S-N Behavior 

Fatigue behavior is strongly affected by the mean stress, Sm, this effect is shown in Figure 

12, where the stress amplitude, Sa is plotted against the number of cycles to failure, Nf, for 

varying mean stresses. In general as shown in the figure compressive mean stresses are 

beneficial, on the other hand, the tensile mean stresses are detrimental this can be observed 

by the intercepts of the three vertical lines with the fatigue life line Nfc, Nfo and Nft. 

 

 

Figure 12 Mean Stress Effect on S-N Behavior [1]. 

The tensile mean stress effect for uniaxial state can be represented in the following 

equations: 

 

Modified Goodman equation 
𝑆𝑎

𝑆𝑓
+

𝑆𝑚

𝑆𝑢
= 1 (8) 

 

Gerber equation 
𝑆𝑎

𝑆𝑓
 + (

𝑆𝑚

𝑆𝑢
)

2

= 1 (9) 

 

Morrow equation 
𝑆𝑎

𝑆𝑓
 +  

𝑆𝑚

𝜎𝑓
= 1 (10) 

Where, 𝑆𝑎, 𝑆𝑚, 𝑆𝑓, 𝑆𝑢, 𝜎𝑓, are stress amplitude, mean stress, fatigue strength, tensile 

strength and fracture strength respectively. 
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1.5.2 Factors that Affect the S-N Behavior 

There are three main factors that affect the behavior of S-N including, microstructure, 

size of the test specimen, and surface finish. Details are shown in appendix C. 

1.5.3 S-N   Approximations 

When experimental fatigue data is not available in data handbooks, design codes, or from 

the test data, there is another option which is a prediction model. There are many 

prediction models, these models usually imply a median fatigue life. 

Figure 13 shows S-N median fatigue curves based on a straight-line log-log 

approximation. 

Basquin in 1910 [7] suggested a log-log straight line S-N approximation in Eq. (11): 

 

 𝑆𝑎  = 𝐴(𝑁𝑓)
𝐵

 (11) 

Where, Sa alternating stress at R= -1, Nf number of cycles, A is the coefficient its the 

value at the intercept at Nf equal one, and B is the slope of log-log S-N curve. 

 

Figure 13 Basquin S-N Curve [1] 
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 The Strain-Life (-N) Approach. 

Fatigue philosophy has changed from one based on an endurance limit method to one based 

upon a more precise assessment of fatigue, the strain-life (ɛ-N) approach has gained wide 

acceptance, particularly in the ground vehicle industry [8]. This approach combines the 

localized highest measured/design strains applied to the structure and the material’s fatigue 

properties. The material’s fatigue properties are characterized by the strain-life curves, 

obtained from strain-controlled fatigue testing of smooth specimens [9]. Total strain 

amplitude is divided in two components, elastic (Δɛe/2) and plastic (Δɛp/2) strain 

amplitudes and given by: 

 

 
∆ε

2
=

∆εe

2
+

∆εp

2
                                                             (12) 

 

 

Where, Δɛ/2, Δɛe/2, Δɛp/2 is the total, elastic and plastic strain amplitudes respectively. The 

elastic strain-life relation can be considered as the stress-life relationship divided by the 

modulus of elasticity given by: 

 

 
∆𝜎

2𝐸
=

∆𝜀𝑒

2
=

𝜎′𝑓

𝐸
(2𝑁𝑓)

𝑏
                                            (13) 

Where, Δ/2 is the stress amplitude; 2Nf is the reversal to failure; ′f is the fatigue strength 

coefficient which is the intercept of the log (Δ/2) versus log (2Nf) plot for 2Nf equal one, 

b is called fatigue strength exponent which is the slope of the elastic curve, and E is the 

modulus of elasticity. Plastic strain-life relationship can be written as: 

 

 
∆εp

2
= 𝜀𝑓

′(2𝑁𝑓)
c
                                                 (14) 

 

 

Where, ′f is the fatigue ductility coefficient taken as the intercept of the plastic curve for 

2Nf equal one and c is the fatigue ductility exponent which is the slope of the plastic curve. 
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Combining the elastic and plastic components results in a form of strain-life relationship 

given by Eq.(15) and shown in Figure 14 for 1141 VFG steel 

 

 

 
∆ε

2
=

𝜎𝑓
′

E
(2𝑁𝑓)

b
+ 𝜀𝑓

′(2𝑁𝑓)
c
                         (15) 

 

 

The four fatigue parameters needed in this relationship are the fatigue strength 

coefficient( σ′
f), fatigue strength exponent (b), fatigue ductility coefficient (ε′f) and 

fatigue ductility exponent (c) 

 

The strain-life approach considers the plastic deformation that occurs at localized regions 

where the crack nucleation usually occurs. This approach is also known the comprehensive 

approach. 

 

 

Figure 14 Typical Strain-Life Curve for SAE 1141 VFG 
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1.6.1 Mean Stress Effects on Strain-Life Approach 

The effect of mean stress in the case of strain-life fatigue behavior is complex. There are 

many models proposed for strain-life fatigue, one of these models called “ Morrow’s 

mean method”, in this method the fatigue strength coefficient is replaced with (f
′-m) in 

the strain-life approach Eq (15). 

 

 
∆ε

2
=

(σ′f − σm)

E
(2Nf)

b + ε′f(2Nf)
c (16) 

Where m is the mean stress. 

When the m is positive it refers to a positive tensile value while when m is negative it 

refers to a compressive value. According to this equation the tensile mean stress is 

detrimental while the compressive mean stress is beneficial to fatigue life. 

An alternative version of Morrow’s mean stress parameter where both the elastic and 

plastic terms are affected by the mean stress is given by Eq. (17), [10]. 

 

 
∆ε

2
= (

𝜎𝑓
′ − 𝜎𝑚

𝐸
) (2Nf)

b + ε′f (
𝜎𝑓

′ − 𝜎𝑚

𝜎𝑓
′ )

𝑐
𝑏⁄

(2Nf)
c (17) 

 

Another equation has been suggested by Smith, Watson, and Topper [11], this equation is 

usually known as “SWT parameter” and given by: 

 

 𝜎𝑚𝑎𝑥𝜀𝑎𝐸 = (𝜎𝑓
′)

2
(2𝑁𝑓)

2𝑏
+ 𝜎𝑓

′𝜀𝑓
′𝐸(2𝑁𝑓)

𝑏+𝑐
 (18) 

 

Where 𝜎𝑚𝑎𝑥 = 𝜎𝑚 + 𝜎𝑎 and 𝜀𝑎 is the alternating strain. 
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 NOTCH EFFECT 

Threads, holes, grooves, and welds cannot be avoided when designing structures or 

mechanical components. These geometrical discontinuities are generally termed as notches 

[12].  When the component is loaded, local stress and strain are induced at these locations 

which in most cases exceeds the elastic limit of the material in the region around the notch 

root even when the nominal stress is still within the elastic limit. When the material 

subjected to a cyclic loading, the cyclic plastic deformation in these highly stressed 

locations can cause a high reduction in the component life. Cyclic plastic strains at the 

notch root can be a location for crack initiation and subsequent propagation which then 

leads to component failure.  

Stress - strain state at the notch root is extremely important in fatigue life calculations. In 

order to define the local stress-strain state at the notch root the local stress 𝜎 has to be 

related to the nominal stress S. There are many models to relate the nominal stress to local 

stress and strain as described in the following sections. The factor used in such situation is 

called stress concentration factor and represented by K. 

1.7.1 Stress Concentration Factor 

The stress concentration also known as stress raisers, it is a location on a component where 

the stress concentrated. When a flat plate with a center hole loaded such as in Figure 15, to 

meet the equilibrium condition the internal force lines become denser around the hole. 

 

Figure 15 Density of Internal Force Lines around the Hole 
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The stress concentration factor K can be defined as the ratio of the maximum stress in the 

body to some other stress taken as a reference stress [13]. 

 𝐹𝑜𝑟 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑟 𝑏𝑒𝑛𝑑𝑖𝑛𝑔               𝐾𝑡 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑜𝑚
 (19) 

 

       

 

  

𝐹𝑜𝑟 𝑡𝑜𝑟𝑠𝑖𝑜𝑛                                       𝐾𝑡 =
𝜏𝑚𝑎𝑥

𝜏𝑛𝑜𝑚
 (20) 

   

 

Where, 𝜎𝑚𝑎𝑥, 𝜏𝑚𝑎𝑥 , are the maximum stresses expected on the component and 𝜎𝑛𝑜𝑚, 

𝜏𝑛𝑜𝑚, the normal and shear stresses. The subscript t refers to the theoretical stress 

concentration factor. 

For a tension plate with a hole in center, the maximum stress occurs at point A in Figure 

16. The stress distribution is also shown in Figure 16. The reference stress is based on the 

net cross sectional area and is defined in Eq. (21) as: 

 

                       
 

   
𝜎𝑛 =

𝑃

(𝐻 − 𝑑)ℎ
 (21) 

 

 

Figure 16 Stress Distribution on a Tension Plate with Hole 
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The stress concentration factor based on the reference stress 𝜎𝑛 = 𝜎𝑛𝑜𝑚 can be obtained 

using Eq. (22) as: 

 

 

 

  

                            𝐾𝑡𝑛 =
𝜎𝑚𝑎𝑥

𝜎𝑛
=

𝜎𝑚𝑎𝑥(𝐻 − 𝑑)ℎ

𝑃
 (22) 

The stress distribution in three dimensional case for a rectangular notched tension bar and 

round shaft is shown in Figure 17 and Figure 18. 

 

 

 

Figure 17 Maximum and minimum stress in rectangular notched bar under axial tension. 
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Figure 18 Maximum and minimum stress for a notched shaft under axial tension 

 

The stress concentration factor is affected by the component geometry. Figure 19 shows 

the variation of Kt with the diameter width ratio for a tension bar with a hole subjected to 

a tensile load. 
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Figure 19 Variation of Kt with r/w Ratio [12] 

 

Different techniques can be used to calculate the stress concentration factor such as, 

photoelasticity and strain gages, but the most powerful technique used in industry is the 

finite element analysis. Theory of elasticity is used to calculate the stress concentration 

factor, this theory is based on formulations that include assumptions that the material is 

isotropic and homogenous. However, in reality the material may be neither be isotropic 

nor homogenous or it may have defects such as voids, porosity or microcracks. Accuracy 

of K values for some materials and applications is still an issue. 

 

The stress concentration factor is used mainly to correlate the nominal stress with the 

maximum stress generated in some local areas on the component which in most cases 

exceeds the yield limit of the material. There are different models proposed to obtain the 

maximum stress with the aid of the elastic stress concentration factor. 



www.manaraa.com

24 

 

1.7.2 Plane Stress and Plane Strain 

1.7.2.1 Plane Stress 

Plane stress is a state of stress in which the normal stress σz, shear stress τxy and τyz are 

assumed to be zero. The plane stress is the simplest form of behavior of continuum 

structures and is the most used condition in practice. 

1.7.2.2 Plane Strain 

Plane strain is a state of strain in which the strain normal to the x-y plane, εz and shear 

strains are assumed to be zero, in this case the dimension of the structure in z-direction is 

very large compared with other directions, the surrounding elastic material restrain notch 

deformation in the thickness direction. 

The plane stress and plane strain conditions are schematically shown in Figure 20. 

 

 

 

Figure 20 Schematic Representations of Notch Root Plane Stress and Plane Strain 
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 MOTIVATION 

 

Considering the amount of time and effort required to obtain the fatigue parameters from 

fatigue experiment, many researchers have attempted to develop correlations between 

monotonic tensile data, so that, prediction of fatigue parameters from simple material 

properties can be used instead of physically testing the material. One of the aims of this 

study is to find a good correlation between simple material properties which are easy to 

obtain, and fatigue parameters. 

 

The best fatigue parameters prediction model for steels is the Modified universal Slopes 

model Eq.(121), where the prediction of  𝜎𝑓
′ and  𝜀𝑓

′  is based mainly on the ultimate tensile 

strength, modulus of elasticity ratio (Su/E). Ultimate tensile strength is a material property 

obtained by conducting a tensile test on a material sample until failure, it is a destructive 

test that needs time to prepare the samples. The aim is to predict the fatigue parameters 

using a less expensive and easy to obtain material property such as hardness in the Modified 

Universal Slopes model and replace the ultimate tensile strength.  

 

Prediction of local stress and strain is essential in design, the best way to obtain stresses 

and strains at notches is to perform elastio-plastic finite element analysis. However, such 

an analysis is time consuming and has convergence issues when used on complex 

components. Neuber’s rule is the most popular analytical method used in industry 

overestimates notch stresses and strains hence, a correction factor is needed. Based on the 

simplicity of applying elastic finite element analysis the second objective of the study is to 

use elastic finite element analysis in conjunction with a correlation factor to Neuber’s rule 

to estimate local stresses and strains at notch roots. These results can then be compared 

with the elastic-plastic finite element results.  
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 LITERATURE SEARCH: 

 Correlations between Cyclic Deformations with Tensile Properties. 

In design, proper selection of material for cyclically loaded structures is very important. In 

order to know the stress-strain response of cyclically loaded structures, fatigue parameters 

should be available. Without doubt, the best way is to conduct comprehensive test 

experiments. However, fatigue test experiments are expensive and time consuming, also in 

most cases fatigue test experiments do not give an accurate results when they are repeated. 

In order to optimize the test results the least square fit is applied. Therefore, theoretically 

estimating the cyclic deformation properties from commonly available monotonic tensile 

properties such as ultimate tensile strength (Su), hardness, or strain hardening exponent (n) 

with reasonable accuracy is very useful.  

2.1.1 Existing methods that estimate ultimate tensile strength from hardness 

2.1.1.1 For Steels 

In order to find correlations between monotonic tensile properties and cyclic properties it 

may be convenient to start with correlations between monotonic properties based on that 

correlations with the cyclic properties can be created. The well-known approximation of 

the ultimate tensile strength, Su from Brinell hardness, HB, for low and medium strength 

carbon and alloy steel is presented by a linear relationship given by Eq. (23), [14]: 

 

 Su=3.45HB (MPa) (23) 

                         

Eq. (23) agrees well with experimental data for HB < 350, [15].  

A second order polynomial approach proposed by Roessle and Fatemi, correlates Su and 

hardness as, Eq. (24), [15]: 

 

 𝑆𝑢 = 0.0012(𝐻𝐵)2 + 3.3(𝐻𝐵) (𝑀𝑃𝑎)                                (24) 

 

Figure 21; shows the two relations in Eq. (23),(24). 
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Figure 21  Ultimate Tensile Strength vs. Brinell Hardness [15]. 

Baumel-Seeger’s [16] proposed the following relationship between ultimate tensile 

strength and Vickers hardness: 

 

 
𝜎𝑢 = 3.29𝐻𝑉 − 47 (𝑀𝑃𝑎) for HV ≤ 445 

𝜎𝑢 = 4.02𝐻𝑉 − 374 (𝑀𝑃𝑎) for HV > 445 
 

(25) 

 

Where, HV is Vickers Hardness. 

JSMS (The Society of Materials Science, Japan) [17] proposed the equation below: 

 

 𝜎𝑢 =
(𝐻𝑉 − 1.837)

0.304
 (𝑀𝑃𝑎) (26) 

 

Kwang-Soo Lee [18], evaluated the four proposed estimation methods using different 

data sources, (NRIM, Boller-Seeger, JSMS). Figure 22; shows the comparison of these 

methods for different alloy steels. It concluded that Roessle-Fatemi’s ultimate tensile 

strength-hardness method gives a reasonable results compared with the other methods. 
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Figure 22 Comparison of the Predicted and Experimental Su for (a) Unalloyed Steel (b) 

Low-Alloy Steel (c) High-alloy Steels [18]. 

 

2.1.1.2 For Non-Ferrous Materials 

JSMS [17], proposed an equation to estimate ultimate tensile strength from hardness for 

aluminum and copper as: 

 

 𝜎 =  
(HV − 21.9)

0.242
(MPa) (27) 
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2.1.2 Existing Correlations between Monotonic Tensile Properties and Fatigue 

Cyclic Deformation Properties.  

 

Many researchers proposed correlation methods to predict the fatigue cyclic deformation 

behavior of steels from monotonic tensile properties and hardness. The first correlation 

method was developed by Manson [19], it correlates the hardening or softening behavior 

with the ultimate tensile strength to yield strength ratio (Su/Sy) for sixteen different 

materials including steel, aluminum, and titanium alloys. Different types of steels were 

used, AISI 4340 (annealed and hard), AISI 52100, AISI 304 ELC (annealed and hard), 

AISI 310 (annealed) and AM 350 (annealed and hard). Tensile tests to obtain the 

monotonic tensile properties and strain-controlled fatigue tests to find the cyclic stress-

strain curves were performed on each material. The results show that materials that have 

Su/Sy  1.4, hardened under cyclic strain; materials that have Su/Sy  1.2 soften under cyclic 

strain; materials that have 1.2 Su/Sy  1.4 have both behaviors. This is shown in Figure 23. 

 

Figure 23 Comparison of Stress Ratio at 1-Percent Strain with Virgin Tensile Properties [19] 
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Landgraf et al. [5], proposed a correlation between the strain hardening exponent (n) and the cyclic 

hardening and softening for several materials as shown in Table 1. 

Z.P. Zhang [20], proposed a parameter called fracture ductility (α) and defined as: 

 

 𝛼 = 𝜓𝜀𝑓 = −𝜓𝑙𝑛(1 − 𝜓) (28) 

 

Because ψ, a percent reduction in area, it reflects the fracture ductility of materials, α also 

reflects the fracture ductility of materials. 

Zhang et al. [21], conducted a study to relate (α) and cyclic hardening or softening behavior 

using 40 different alloys including (aluminum, titanium, and steel), according to this study 

they found that as the fracture ductility parameter is less 2% or between 20% and 65%, the 

material behavior soften under cyclic loading, for fracture ductility between 2% and 20% 

the material is cyclically harden.  

There are many approaches that relate the cyclic strength coefficient (K′) and cyclic strain 

exponent (n′) using monotonic tensile properties and hardness. Zhang et al. [21], proposed 

a method to estimate the cyclic strain exponent from monotonic tensile properties. In order 

to estimate the strain hardening exponent (n′), three characteristics are defined based on 

monotonic tensile properties; these are: 

 

 n′  n for α  20% and for f
΄/0.2  1.6. (29) 

 

 nʹ  n for α  20% and for f
΄/0.2  1.6 (30) 

 

 (f - u)/0.2  n/n′ for α  20% (31) 

 

Where f u, 0.2 are strength coefficient, ultimate tensile strength, and yield strength 

respectively. 

According to the above characteristics the following relationships was proposed: 

 

 𝑛′ = 1.06𝑛 (1 + 𝛽 |1 −
𝜎𝑢

𝜎0.2
|)                                            (32) 
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For α  5% or for 10%  α  20% 

 

 𝑛′ = 1.06𝑛 (1 + 𝛽 |1 −
𝜎𝑓

𝜎𝑢
|) (33) 

For 5%  α  10% 

 

 𝑛′ = [
𝜎0.2

𝜎𝑓
΄ − 𝜎𝑢

] 𝑛 (34) 

For α  20% 

 

In Eq. (32),(33),  𝛽 = 1  for 𝜎𝑓
΄
 /0.2  1.6, but 𝛽 = −1  for 𝜎𝑓

΄ /0.2  1.6. 

Zhang, Qiao [21], proposed an estimation method to predict cyclic strength coefficient (K′) 

in MPa from monotonic strength coefficient (K) in MPa as: 

 

 𝐾′ = 57𝐾0.545 − 1220 (35) 

 

Eq. (35), obtained by using a least squares for experimental data of seventeen alloys 

including (Aluminum, steel, and titanium). 

Basan et al. [22], derived an equation that correlate the cyclic strength coefficient (K′) and 

Brinell hardness by investigation of forty 42CrMo4 steels gathered from literature, a least 

squares fit using second order polynomial results in the following equation with 

R2 =0.703. 

 𝐾′ = 0.009(𝐻𝐵)2 + 0.117(𝐻𝐵) + 376.75 (36) 

 

Li et al. [23], provided an estimation method to predict cyclic strength (Sy
′ ) using ultimate 

tensile strength (Su) and percent reduction in area (RA) as: 

 

 𝑆𝑦
′ = (1 + 𝑅𝐴)𝑆𝑢 [

0.002

𝑙𝑛(1 − 𝑅𝐴)
]
0.16

 (37) 
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The data used to derive the above expression was based on studies performed on twenty-

seven alloys from [24, 25]. 

Table 1 shows that when (n) is greater than 0.2, cyclic hardening is expected. When (n) 

less than 0.1 cyclic softening is experienced. Mixed behavior experienced in between. 

 

Table 1 Correlation between Strain Hardening Exponent and Material's Behavior [21] 

Material Condition 
0.2% Sy 

Sy/Sy
′ (ksi) 

n/n′ Cyclic behavior 

 

OFHC Copper 

annealed 

partial annealed 

cold worked 

3/20 

37/29 

50/34 

0.4/0.15 

0.13/0.16 

0.1/0.12 

hardens 

stable 

soften 

2024 aluminum T4 44/65 0.2/0.11 harden 

7075 aluminum T6 68/75 0.11/0.11 harden 

Man-Ten steel as-received 55/50 0.15/0.16 soften and harden 

SAE 4340 steel Q&T, 350 BHN 170/110 0.066/0.14 soften 

Ti-8Al-1Mo-1V duplex annealed 145/115 0.078/0.14 harden 

SAE 1045 steel Q&T, 595 BHN 270/250 0.071/0.14 stable 

SAE 4142 steel as-quenched, 670 BHN 235/-- 0.14/-- hardens 

 

2.1.3 Estimation of Fatigue Parameters using Monotonic Tensile Properties.     

Several estimates of Coffin-Manson’s parameters have been proposed in the literature. 

Table 2 since Morrow [26], who in 1964 correlated the b and c exponents with the cyclic 

hardening exponent n′. Manson’s universal slopes method [27], Manson’s four-point 

correlation method [27], Rask-Morrow method [28], Mitchell method [29], Muralidharan 

and Manson [30], Baumel and Seeger [16], Ong’s modified 4-point correlation method 

[31], Roessle and Fatemi [15], Median’s method [32]. 

Among the above mentioned methods, Baumel-Seeger’s uniform material law [16] and 

Maggiolaro-Castro’s medians method [32] two tensile monotonic properties are needed to 

predict fatigue parameters this make them easy to apply. Roessle- fatemi method requires 

only hardness and modulus of elasticity make it the most convenient prediction method. 

Park and Song [33], evaluated systematically all the methods proposed until 1995 using 

published data on 138 different materials. Figure 24 shows the prediction capability for 

each estimation method, it is clearly shown that the modified universal slopes method 

provides the best estimates. 
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Figure 24 Comparison of Predicted and Experimental Fatigue Lives for low-alloy Steel 

[18] 
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Table 2 Estimation Methods for Coffin-Manson's Parameters 

Estimation 

Method 
′

f ′
f b c 

Morrow (1964) - - 
−𝑛′

1 + 5𝑛′
 

−1

1 + 5𝑛′
 

Manson’s 

Universal Slopes 
(1965) 

1.9Su 0.76[𝑙𝑛 (
1

1 − 𝑅𝐴
)

0.6

 -0.12 -0.6 

Manson’s four-
point (1965) 

1.25f(2)b 0.125

20𝑐
[𝑙𝑛 (

1

1 − 𝑅𝐴
)

3
4⁄

 
𝑙𝑜𝑔 (0.36𝑆𝑢

𝑓
⁄ )

5.6
 

(.33)𝑙𝑜𝑔
[0.0066 − 𝑓(2𝑥104)𝑏

0.239𝐸 [𝑙𝑛 (
1

1 − 𝑅𝐴
)]

3
4⁄
 

Rask-Morrow 
(1969) 

- 0.002(
𝜎𝑓

′

𝑆𝑦
′⁄ )

1
𝑛′⁄

 - - 

Mitchell  
( Steel, 1977) 

Su+345 MPa f (−.167)𝑙𝑜𝑔 (
0.5𝑆𝑢

𝑆𝑢 + 345
) -0.6(ductile) or -0.5 (strong) 

Muralidharan- 

Manson (1988) 0.632𝐸 (
𝑆𝑢

𝐸
)

.832

 0.0196𝜀𝑓
′ (

𝑆𝑢

𝐸
)

−0.53

 -0.09 -0.56 

Baumel-Seeger 
(Steels,1990) 

1.5 (
𝑆𝑢

𝐸
) 

0.59 if Su/E  0.003 

0.812-74Su/E 
-0.087 -.58 

Baumel-Seeger 

(Al and Ti,1990) 
1.67Su 0.35 -0.95 -0.69 

Ong (1993) Su(1+′
f) f 

1

6
𝑙𝑜𝑔

(
𝑆𝑢

𝐸⁄ )
0.81

6.25σf
𝐸⁄

 
1

4
𝑙𝑜𝑔

0.0074 −
𝜎𝑓

′(104)𝑏

𝐸
2.074𝜀𝑓

 

Roessle-Fatemi 

(2000) 

4.25HB+225 

MPa 

[0.32HB2-

487HB+191000]/E 
-0.09 -0.56 

Medians 

(Steel,2002) 
1.5 (

𝑆𝑢

𝐸
) 0.45 -0.09 -0.59 

Medians  

(AL, 2002) 
1.9Su 0.28 -0.11 -0.66 

Modified 

Mitchell (2003) 

𝑆𝑢 + 335

𝐸
 f −

1

6
(
𝑆𝑢 + 335

0.446𝑆𝑢

) -0.664 

 

Seven estimation methods, i.e. Manson’s original 4- points correlation method, universal 

slopes method, modified universal slopes method, Mitchell’s method, modified 4-point 

correlation method, modified Mitchell’s method and uniform materials law method were 

evaluated by Jeon and Song [34], this study leads to a conclusion that the modified 

universal slopes method provides the best results for steels and modified Mitchell’s 

method, for aluminum and titanium alloys. As these two modified methods require both 

ultimate tensile strength Su and fracture ductility f data, they also reported that when the 

fracture ductility f is not available, the uniform material law may be utilized as an 

alternative to obtain estimation results [18]. 
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Kim et al. [35] used eight steels to evaluate seven different prediction methods, Manson’s 

original 4- points correlation method and universal slopes method, modified universal 

slopes method, Mitchell’s method, modified 4-point correlation method and, uniform 

materials law method and Roessle-Fatemi’s hardness method, concluded that modified 

universal slopes method, the uniform materials law and Roessle-fatemi’s hardness method 

provide good results. 

Maggiolaro and Castro [32] proposed medians method and compared with seven other 

prediction methods, the evaluation is based on the prediction ratio (Npredicted/Nobserved), they 

concluded that the medians method provides better results and reasonable results are 

obtained from modified universal slopes method and Roessle-Fatemi hardness method, 

Figure 25, shows the average life prediction ratio for each estimation method with the strain 

amplitude levels between 1.2% to 5%. 

 

Figure 25, Average Prediction Ratio versus Strain Amplitude [32] 

Kwang-Soo Lee and Ji-Ho Song [18] stated in their study that, for steel, it is the best to use 

the modified universal slopes method with experimentally obtained ultimate tensile 

strength Su and fracture ductility f, also they ranked the estimated methods as shown in 

Table 3. 
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Table 3 Ranking of Estimation Methods in Total Predictability for each Material Group [18] 

Material group 
Ranking 

1 2 3 4 

Unalloyed steels 

Modified 

universal slopes 

method 

Roessle-Fatemi’s direct 

hardness method 
Uniform material law  

Low-alloy steels 

Modified 

universal slopes 

method 

Roessle-Fatemi’s direct 

hardness method 

Indirect hardness 

method of (Mitchell’s 

hardness method + 

medians method) 

Medians 

method 

High alloy steels 

Modified 

universal slopes 

method 

Medians method 
Roessle-Fatemi’s  

direct hardness method  
 

Aluminum alloys Medians method 

Indirect hardness 

method of ( Roessle-

Fatemi’s hardness + 

medians method) 

Uniform material law  

Titanium alloys 
Modified 

Mitchell’s method 
Uniform material law 

Indirect hardness 

method of (hardness 

method proposed + 

uniform material law 

 

 

Based on the above literature search, it can be concluded that for steels, the modified 

universal slopes method has the best prediction capability among the other prediction 

methods. 

For aluminum and titanium alloys the Medians and Modified Mitchell’s method are the 

most applicable methods.   

 

2.1.4 Commonly Used Notch Stress-Strain Models 

The models frequently used for notch stress-strain calculations are linear rule, Neuber’s 

rule, and Glinka’s rule. These rules can be used only when the nominal stress is below the 

elastic limit of the material which is the case for most components and structures 

designed to resist fatigue failure. 

 

2.1.4.1 Linear rule  

This rule is based on the assumption that both stress and strain concentration factors are 

the same as shown in Eq. (38) 

 𝜎 = 𝐾𝑡𝑆        ,         𝜀 = 𝐾𝜀𝑒 = 𝐾𝑡𝑒 (38) 
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Stephens et al. [1], stated that the linear rule is applicable for plane strain situations. 

2.1.4.2 Neuber’s Rule 

Neuber [36], proposed the theory of notch stress for prismatic body subjected to a pure 

shear loading as: 

 

 𝐾𝜀𝐾𝜎 = 𝐾𝑡
2 (39) 

 

 𝜀𝜎 = 𝐾𝑡
2𝑒𝑆 (40) 

 

When the elastic strain 𝒆 replaced by S/E, and 𝜺 replaced by Eq. (2), the Neuber’s rule for 

nominally elastic behavior becomes: 

 

 𝑆2𝐾𝑡
2

𝐸
=

𝜎2

𝐸
+ 𝜎 (

𝜎

𝐾
)

1
𝑛

 (41) 

 

To find the notch stress the above equation can be solved using iterative or numerical 

schemes. 
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Figure 26 Determination of Monotonic Notch Strain using Neuber's Rule 

 

Topper et al. (1969), [37] extended Neuber’s rule to fatigue problems, the monotonic 

properties are replaced by the equivalent fatigue properties and Eq. (41) is modified as: 

 ∆𝑆2𝐾𝑡
2

𝐸
=

∆𝜎2

𝐸
+ 2∆𝜎 (

∆𝜎

2𝐾′
)

1
𝑛′

                                  (42) 

 

 

Figure 26 shows the determination of notch stress-strain using Neuber’s rule. Figure 27 

represents the cyclic local stress-strain determination. Based on published studies in the 

literature, Neuber’s rule predicts a conservative estimates of local strain compared to 

experimental data. 
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Figure 27 Cyclic Notch Stress-Strain Determination for Constant Amplitude using 

Neuber's Rule. 

Most of studies show that Neuber’s rule provides good estimation for thin sheets and 

plates “plane stress”, and gives a conservative results under plane strain conditions [38], 

[39] and [40] , the reason for the conservative nature of Neuber’s rule was investigated 

and partially explained by Tipton [41], according to this study the multiaxial notch stress 

state constrains plastic flow and thus resists straining along load direction. 

 

Under cyclic loads, the state of stress at the notch is assumed to be uniaxial. This is only 

true when the specimen thickness is small relative to the notch radius, in this case the notch 

root material freely contracts in the transverse direction. The opposite is true for the plane 



www.manaraa.com

41 

 

strain condition. In such cases the transverse contractions are restricted. Hence the uniaxial 

stress-strain curve cannot be used in a biaxial condition at the notch tip.  

Dowling et al. [42] (1977), proposed a transformation procedure from uniaxial to a biaxial 

condition by applying Hooke’s law and von Mises’s criterion for the elastic and plastic 

terms in the stress and strain relationship. Dowling, suggested the following simplified 

transformation equations to translate the uniaxial cyclic stress-strain curve (σa - εa) into a 

biaxial “plane-strain” relation σ1a΄-ε1a΄, Eq. (43),(44),(45)and (46) 

 

 𝜎1𝑎
΄ =

𝜎𝑎

√1 − 𝜇 + 𝜇2
                                            (43) 

 

 𝜀1𝑎
΄ =

𝜀𝑎(1 − 𝜇2)

√1 − 𝜇 + 𝜇2
                                            (44) 

 

 𝜇 =
𝜈 +

𝐸𝜀𝑝𝑎

2𝜎𝑎

1 +
𝐸𝜀𝑝𝑎

𝜎𝑎

                                            (45) 

 

 𝜀𝑎 =
𝜎𝑎

𝐸
+ 𝜀𝑝𝑎                                             (46) 

 

2.1.4.3 Glinka’s Rule 

This method was proposed by Molski and Glinka [43] (1981), using the strain energy 

approach, it is based on the assumption that when the plastic yielding at the notch tip is 

small in this case it is controlled by the surrounding elastic stress field and the energy 

density distribution for the plastic zone is the same for linear elastic materials. 

The proposed model has the form: 

 
𝑆2𝐾𝑡

2

𝐸
=

𝜎2

𝐸
+

2𝜎

𝑛 + 1
(
𝜎

𝐾
)
1

𝑛⁄

 (47) 
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The only difference with Neuber’s rule is the term 2/(n+1), since this term is greater than 

unity a lower 𝜎 value is needed to satisfy the equation which means that this method gives 

a lower notch  stress value as compared to Neuber’s method. 

 

Glinka [44], modified Eq. (47) by introducing a factor, Cp based on the fact that when stress 

redistribution occurs in the area neighboring the notch tip, the plastic zone expand to reach 

an equilibrium condition, in this case Eq. (47), should be multiplied by the correction factor 

Cp and is given by: 

 

 𝐶𝑝 = 1 +
∆𝑟𝑝

𝑟𝑝
 (48) 

 

Where 𝑟𝑝, is the plastic zone size and ∆𝑟𝑝 is the increment of plastic zone growth.The value 

of 𝐶𝑝 ranges from 1 to 2. 

The modified Glinka’s method is proposed in Eq. (49): 

 

 𝐶𝑝

𝑆2𝐾𝑡
2

𝐸
=

𝜎2

𝐸
+

2𝜎

𝑛 + 1
(
𝜎

𝐾
)
1

𝑛⁄

 (49) 

 

Based on a studies conducted on Glinka’s local stress-strain prediction, results in a 

conclusion that, it is a non-conservative method (it gives lower strain than the actual).  

 

Hoffman and Seeger part 1 and 2 (1985), [45], [46] extended the well-known uniaxial 

notch stresses to multiaxial stress states which requires two steps: First, a relationship 

between applied load and equivalent stress and strain is established. Neuber’s rule is 

chosen, replacing the uniaxial quantities σ, ε and Kt by equivalent quantities σq , εq and 

Ktq using von Mises yield criterion. In the second step, the principal stresses and strains at 

the notch root are correlated to the equivalent quantities σq , εq obtained from the first 

step as: 

 



www.manaraa.com

43 

 

 𝜀𝑞 =
𝜎𝑎

𝐸
F(

𝜎𝑒,𝑞

𝜎𝑞
)      1 ≤

𝜎𝑒,𝑞

𝜎𝑞
< 𝐾𝑝                            (50) 

 

Where, 𝜀𝑞 and 𝜎𝑎 denote the equivalent notch strain and stress, respectively. 𝐾𝑝, is 

defined as the limit load factor and defined as the ratio of the load producing cross 

section yielding to the yield initiation load. F, is defined as the geometry correction 

factor. 

The assumption is that the principal stress directions remain unchanged during loading 

which is satisfied under the condition of symmetry and approximate for other cases of 

proportional loading. In this case Henky’s equation is used by assuming that the strain 

component in one direction is a function of a strain component in a mutually normal 

direction. The proposed method is comparable to Dowling’s method [42], the difference is 

in formulating the approximation formulas. In Dowling’s method it is written in terms of 

maximum stress σ1 and strain ε1 instead of the equivalent quantities σq , εq. In the second 

part of Hofmann and Seeger paper [46], the proposed method is applied on a round bar 

with a circumferentia notch under tensile load and a thick-walled cylinder under internal 

pressure. A comparison of the results with an elasto-palstic finite element analysis 

produced a maximum deviation of 30 percent. The method proposed an estimation for 

stresses and strains under proportional loading condition, they used different steps to 

estimate multiaxial notch stresses and strains. 1) Definition of material stress-strain curve 

σ = g(ε) and selection of Von Mises as a yield criterion. 2) Definition of the elastic material 

constants and principal stresses σel , σe2, and principal stress directions. 3) Estimation of 

plastic limit stress, Sp for elastic perfectly-plastic material. 4) Calculation of the theoretical 

elastic equivalent notch stress σq based on Von Mises and computation of Ktq. 5) Use of 

Neuber’s rule as an approximation formula. 6) Application of notched element boundary 

conditions, fixed principal stress direction and constant strain ratio. 7) Calculation of stress 

and strain components. This method is based on istotropic hardening rule which fails to 

represent the Bauschinger effect. 

 James et al. [47], (1989) proposed a numerical approximation method for calculating 

plastic notch stress and strains. The method ignores the compatibility condition and uses 

the total deformation theory of plasticity. It starts with the analytical elastic stress and strain 
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distribution for hyperbolic notches and predicts elastic stress and strain distributions for 

semicircular and U-shaped notches. The results were compared with a plane stress finite 

element analysis, it showed that the notch root strains were underestimated by (20-30) 

percent. 

The Gowhari-Anaraki and Hardy [48], (1991) prediction method is a modified Neuber’s 

method for multi-axial states. This is accomplished by substituting either the equivalent or 

meridional stress and strain into the Neuber’s equation as: 

1. Based on equivalent stress and strain: 

 ∆𝜎𝑒𝑞∆𝜀𝑒𝑞
1 = 𝐾𝑡𝑒𝑞

2 ∆𝜎𝑎∆𝜀𝑎 (51) 

 

Where: the subscripts, a and eq are nominal and equivalent respectively. 

2. Based on the meridional stress and strain: 

 

 𝐾𝜎𝑚𝐾𝜀𝑚 = 𝐾𝑡𝑚
2

𝐸

𝐸𝑒𝑓𝑓
 (52) 

Where: 𝐸𝑒𝑓𝑓 and m, are the effective modulus of elasticity of the notch and meridional 

respectively. 

A study was conducted by Sharp et. al. [49], (1992) using finite element analysis and a 

laser based technique to measure the biaxial strains. The results compared with results 

obtained using Neuber’s and Glink’s methods; and led to the conclusion that, Neuber’s 

method gives a reasonable prediction under plane stress condition and Glink’s rule works 

best for plane strain conditions. 

Tashkinov and Filatov [50], (1993) proposed an improved energy density method for 

inelastic notch tip strain calculations using a partial power approximation of the stress-

strain curve of the material. The plastic zone correction factor Cp, in Glink’s rule could be 

expressed explicitly.in this approximation, the stress-strain curve is expressed as: 
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 𝑆 =  𝑆𝑦 (𝜀 𝜀𝑦⁄ )  𝑓𝑜𝑟 𝑆 ≤  𝑆𝑦 𝑎𝑛𝑑 𝑆 = 𝑆𝑦 (𝜀 𝜀𝑦⁄ )
𝑚

 𝑓𝑜𝑟 𝑆 >  𝑆𝑦 (53) 

 

 

Where 𝜀𝑦the yield strain and m is a material constant. The technique is extended to the 

generalized strain and axisymmetric conditions for which the energy postulate of the 

energy density method is modified. A scheme for analysis has been proposed for the case 

of nominal plastic yield. The results have been compared with the finite element method 

and experimental data. 

Lee et al. [51] (1995), proposed an estimation techniques for multiaxial notch stresses and 

strains on the bases of elastic stress solutions. This technique utilizes a two-surface model 

with the Morz hardening equation and the associated flow rule to simulate the local notch 

stress and strain responses for any geometrical constrains of the specimens under 

monotonic behavior for in-phase out-of phase loading. The uniaxial material properties 

associated with the two-surface model are determined by the Neuber’s rule, Glink’s rule 

and FEA results. The results obtained were compared with elasto-plastic FEA and 

experimental results. Reasonable correlation was found between the measured and 

predicted notch strains for SAE 1045 material. The elastic stress versus strain relation 

proposed by Lee et al., can be summarized as: 

1. Determine the uniaxial elastic stress versus true strain relation by Neuber’s rule or 

Glink’s energy density method. 

2. Estimation of material parameters K′ and n′ by fitting the stress strain curve. 

3. Calculate deviatoric stress vector by: 

 𝑑𝑠̅̅ ̅ = 𝑑̅𝜎 −
1

3
(𝑑̅𝛼 ∗ 𝐼)̅ (54) 

 

Where, 𝑑̅𝜎, 𝑑̅𝛼, and 𝐼 ̅ denotes the stress incremental tensor, the change of back 

stress position center and is the unit tensor respectively. 

4. Calculate hardening modulus as: 
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 𝐻 =
2

3
𝐾′𝑛′ [

2(𝜎𝑦𝑐
𝐿 − 𝜎𝑦𝑐)(𝐷 − 1) + 𝜎𝑦𝑐

𝐿

𝐾′
]

𝑛′−1
𝑛′

 (55) 

 

Where, D, 𝜎𝑦𝑐
𝐿 , are the normalized distance from has value from 0 to 1 and the limit 

surfaces. 

5. Calculate plastic strain increments as: 

 

 𝑑̅𝜀𝑝 =
3

2𝐻𝜎𝑦𝑐
2

(𝑠̅ − 𝛼̅)[(𝑠̅ − 𝛼̅) ∗ 𝑑̅𝑠] (56) 

 

6. Calculate elastic strain increments as: 

 𝑑̅𝜀𝑒 =
1 + 𝜈

𝐸
[𝑑̅𝜎 −

𝜈

1 + 𝜈
(𝑑̅𝜎 ∗ 𝐼)̅𝐼]̅ (57) 

 

7. Calculate total strain increments as: 

 

 𝑑̅𝜀′ = 𝑑̅𝜀𝑒 + 𝑑̅𝜀𝑝 (58) 

 

8. Determine the back stress by 

 𝑑̅𝛼 =
(𝑆̅ − 𝛼̅) ∗ 𝑑̅𝑠

(𝑆̅ − 𝛼̅) ∗ [𝑆̅(𝜎𝑦𝑐
𝐿 − 𝜎𝑦𝑐) − 𝛼̅𝜎𝑦𝑐

𝐿 ]
[𝑆̅(𝜎𝑦𝑐

𝐿 − 𝜎𝑦𝑐) − 𝛼̅𝜎𝑦𝑐
𝐿 ] (59) 

 

Buczynski and Glinka [52], (1995) proposed their analytical method to calculate the notch-

tip stresses and strains in elastic-plastic bodies subjected to non-proportional loading 

sequences. It is based on the axis invariant incremental relationship between elastic and 

elastic-plastic strain energy density at the notch tip. This method appears to be suitable for 

fatigue life analysis of notch bodies subjected to multiaxial cyclic loading paths.  
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Z. Zeng and A. Fatemi [53], (2000) investigated the stress and strain behaviour at notch 

root under monotonic and cyclic loading, the results obtained from Neuber’s rule, Glink’s 

rule where compared with elasto-plastic finite element analysis results. The results show 

that the Glink’s rule is suitable for calculating notch root strain and stress amplitudes of a 

notched components, where the notch is under either a plane stress or plane strain 

condition. Neuber’s rule may only be suitable for calculating notch root strain and stress 

amplitudes of notched component, where the notch stress state is plane stress. 

Stevan Maksimovic [54], (2005) proposed method that combined Neuber’s and finite 

element method with strain-life criterions in order to accurately predict fatigue crack 

initiation life and then establish an estimated schadual of fatigue life. The local strain 

obtained using the equivalent stress strain relationship as: 

 

 ∆𝜎𝑒𝑞∆𝜀𝑒𝑞 =
𝐾𝑡

2∆𝑆𝑒𝑞
2

𝐸
 (60) 

 

Where, ∆𝜎𝑒𝑞and ∆𝜀𝑒𝑞 are equivalent stress and strain ranges respectively. 

The fatigue life is calculated as: 

 

 
∆𝜀𝑒𝑞

2
=

𝜎𝑓
′ − 𝜎𝑚

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′(2𝑁𝑓)
𝐶
 (61) 

 

Where, 𝜎𝑚 is the mean stress. 

L. Samuelsson [55], (2008) used titanium alloy “Ti6-4” in a study and proposed a 

prediction method based on a correlation between linear FEA and Neuber’s rule estimation 

solution with assumption of a linear relationship between the linear and nonlinear notch 

root stress and  strain solutions as: 

 𝜎𝑐𝑜𝑟𝑟 = 𝜎𝑛 + (𝑚 − 1) ∗ (𝜎𝑙 − 𝜎𝑛) (62) 
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 𝜀𝑐𝑜𝑟𝑟 = 𝜀𝑛 + (𝑚 − 1) ∗ (𝜀𝑙 − 𝜀𝑛) (63) 

 

Where, 𝜎𝑛 , 𝜀𝑛 are Neuber’s stress and strain respectively 

𝜎𝑙, 𝜀𝑙 are the stress and strain obtained using the linear rule. 

m = 1 represent the Neuber’s rule. 

m = 2 represent the linear rule. 

1 < m < 2 represent a linear interpolation between the Neuber’s rule and the 

linear rule. 

 

Tanweer et al. [56], (2012) developed a method to predict large elastic-plastic notch 

stress and strains, for materials with power-hardening law. The proposed method is 

implemented within simple structures with combination of limit load 𝑆𝑝 and elastic stress 

concentration factor. The method can be summarized as: 

 

 𝜎𝑒𝑞 = [(1 − 𝑛)
𝜎𝑦

𝑆𝑝
+ 𝑛𝐾𝑡𝑞] 𝑆 (64) 

 

 

 𝜀𝑒𝑞 = [

(1 − 𝑛)
𝜎𝑦

𝑆𝑝
+ 𝑛𝐾𝑡𝑞

𝐾
]𝑆

1
𝑛 (65) 

Where, 𝜎𝑦, 𝐾𝑡𝑞, are the yield stress and equivalent stress concentration factor 

respectively. 
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 PLASTICITY 

The adjective “plastic” originally comes from a Greek word means “to shape”. Metals 

undergoes a permanent shape change when plastically deformed. 

To understand plasticity it is convenient to split the stress tensor into two parts, one called 

a hydrostatic or spherical stress and the other is deviatoric stress tensor. The hydrostatic 

stress is responsible for material volume change, on the other hand the deviatoric stress 

causes the shape change. The hydrostatic stress can be expressed by a general form as Pij 

whose elements are given by σmδij where σm is the mean stress, Eq. (66) and [57] 

 

 

 𝑃𝑖𝑗 = 𝜎𝑚𝛿𝑖𝑗 = [

𝜎𝑚 0 0
0 𝜎𝑚 0
0 0 𝜎𝑚

]                                            (66) 

 

 

 𝜎𝑚 =
𝜎1 + 𝜎2 + 𝜎3

3
                                                                   (67) 

 

 

Experimental work on metal alloys reveals that the effect of hydrostatic stress is 

insignificant and can be neglected. In plastic flow considerations only the difference 

between the stress tensor and hydrostatic stress is important Eq. (68) and  [57]: 

 

 𝑆𝑖𝑗 = 𝜎𝑖𝑗 − 𝑃𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝑚𝛿𝑖𝑗 = [

𝜎𝑥 − 𝜎𝑚 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜎𝑦 − 𝜎𝑚 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧 − 𝜎𝑚

] (68) 

 

Yielding has to be considered as a yield surface, the yield surface is defined in a stress 

space as a convex surface separate elastic and elastic-plastic regions. Outside this surface 

the material exhibit a permanent deformation “plastic deformation” where at any stress 

value within or lower represent a reversal behavior “elastic condition”. When a metal 

alloy has been loaded beyond the yield surface and plasticity occurred unloaded followed 

by reload it yields at a higher value, in other word the yield surface grows in a positive 
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direction, this behavior called material hardening. In general there are two types of 

hardening, isotropic and kinematic hardening.   

Plastic deformation due to cyclic loading is the major factor during fatigue damage 

process. Therefore, an understanding of multi cyclic plastic deformation is essential 

specially when there is significant plastic deformation as in notches. 

Plastic deformation theory consists of the following basic elements: 

1. A yield criteria to define the initiation of plastic flow. 

2. A flow rule which relates the applied load increments to the corresponding 

plastic strain increments after plastic flow has initiated. 

3. A hardening rule which describes the change in yield surface with plastic strains. 

 

2.2.1 Failure Theories 

2.2.1.1 Von Mises 

Failure and fracture of material have two different meanings, for design purposes it is 

assumed that if the material starts yielding it will not serve the intended purpose. The 

current terminology is related to yielding rather than failure theories. The most famous 

yield theory used in finite element packages is Von Mises criteria or distortion energy 

theory. The Von Mises theory describes the multi-axial stress state at a point in a body in 

one stress value called equivalent stress “σe”, which can be compared with a uniaxial 

yield stress value. 

In order to understand the bases of Von Mises theory it is conventional to define the 

magnitude of the principal stresses value at a point P Figure 28, where the stress vector T 

is normal to a plane passing through point P, in other word, a plane or planes where the 

shear stress is absent. These planes are called principal planes, [57]. 
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Figure 28 Planes Passing through Point P in a body under Applied Surface Forces. 

 

This can be written mathematically: 

 

 𝑇𝑖 = 𝜎𝑛𝑖                                                             (69) 

 

 

Where, 𝑇𝑖 is a stress vector, 𝜎 is the magnitude of the stress vector which is totally 

normal to a plane whose normal is defined by 𝑛𝑖. 

Eq. (69) can be expressed in terms of indicial notation as: 

 

 𝜎𝑗𝑖𝑛𝑖 = 𝜎𝑛𝑖                                                (70) 

 

 

𝜎, is an eigen value of stress tensor 𝜎𝑗𝑖, and represent the value of principal stresses. 

Eq. (70) can be written such as Eq. (71) 

 

 𝜎𝑗𝑖𝑛𝑗 = 𝜎𝛿𝑖𝑗𝑛𝑗                                  (71) 

n 

F 

F 

Plane passing through P 

P 
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Where𝛿𝑖𝑗, is a mathematical operator called kronecar delta. 

Rearranging of Eq. (71) gives the form below: 

 

 (𝜎𝑖𝑗 − 𝜎𝛿𝑖𝑗)𝑛𝑗 = 0                 (72) 

 

 

The non-trivial solution of the above equation can be obtained as: 

 

 𝑑𝑒𝑡(𝜎𝑗𝑖 − 𝜎𝐼) = 0               (73) 

 

 

The result will be a cubic equation such as, Eq. (74): 

 

 𝜎3 − 𝐼1𝜎
2 − 𝐼2𝜎 − 𝐼3 = 0            (74) 

 

 

Where, 𝐼1, 𝐼2 and 𝐼3 called invariant which they are independent of planes. 

The value of each invariant is expressed mathematically as: 

 𝐼1 = 𝜎𝑖𝑖                                                 (75) 

 

 

 𝐼2 = 1
2⁄ (𝜎𝑖𝑗𝜎𝑖𝑗 − 𝐼1

2)                    (76) 

 

 

 𝐼3 = 𝑑𝑒𝑡[𝜎]                                        (77) 

 

 

The roots of the Eq. (74), 𝜎1, 𝜎2 and 𝜎3 represent the values of principal stresses. The 

eigen vectors are the principal planes which they are orthogonal. 
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Von Mises stated that the stress tensor can be composed additively into two parts, a 

hydrostatic stress tensor responsible for volume change and deviatoric stress tensor 

responsible for distortion as. 

 

 𝜎𝑖𝑗 = [
𝑃 0 0
0 𝑃 0
0 0 𝑃

] + [

(𝜎11 − 𝑃) 𝜎12 𝜎13

𝜎21 (𝜎22 − 𝑃) 𝜎23

𝜎31 𝜎32 (𝜎33 − 𝑃)
]                  (78) 

 

 

                                                                [𝜎𝑖𝑗] = [𝑃]               +                     [𝑆𝑖𝑗] (79) 

 

 

Where, P and 𝑆𝑖𝑗 are the hydrostatic and deviatoric stress tensors respectively. 

For metals, experimental studies reveals that the hydrostatic part is not significant, and 

can be neglected. The second part has invariants named 𝐽1, 𝐽2, 𝑎𝑛𝑑 𝐽3.   

These invariants can be obtained using the same analogy of the pervious process as: 

 

 𝐽1 = 𝐼1 = 0                                                  (80) 

 

 

 𝐽2 =
1

2
(𝑆𝑖𝑗𝑆𝑖𝑗)                                      (81) 

 

 

 𝐽3 = 𝑑𝑒𝑡[𝜎]                                      (82) 

 

 

 

Yielding is independent of coordinate system, it is a function of  𝐽2 and 𝐽3. It has been 

found experimentally that 𝐽3 is insignificant for metals. 

Metals starts yielding when  𝐽2 reaches a critical value 𝑘2 which is related to the uniaxial 

yield stress 𝜎𝑦.  
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For uniaxial load stress can be expressed in Eq. (83) as: 

 

 [𝜎] = [
𝜎 0 0
0 0 0
0 0 0

]                                         (83) 

 

 

The hydrostatic stress part is the mean value: 

 

 𝑃 =
𝜎

3
                                                      (84) 

 

 

The deviatoric stress is defined in Eq. (85) as: 

 

 [𝑆] = [

𝜎 − 𝜎
3⁄ 0 0

0 −𝜎
3⁄ 0

0 0 −𝜎
3⁄

]                (85) 

 

 

 𝐽2 = 𝐾2                                                     (86) 

 

 

 𝐽2 =
1

2
(𝑆𝑖𝑗𝑆𝑖𝑗)                                  (87) 

 

 

Substitution and simplification of Eq. (85),(86) and (87) gives: 

 

 𝐽2 =
1

2
(𝑆11

2 + 𝑆22
2 + 𝑆33

2 )                           (88) 
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 =
1

2
[(𝜎 −

𝜎

3
)
2

+ (−
𝜎

3
)
2

+ (−
𝜎

3
)
2

] =
1

3
𝜎2                       (89) 

 

Yielding occurs in a uniaxial case when stress reaches 𝜎𝑦 , so each stress value 𝜎 is 

substituted by 𝜎𝑦. In this case the multiaxial condition can be compared with a uniaxial 

case as in Eq. (90) and (91): 

 𝐽2 = 𝐾2 =
1

3
𝜎𝑦

2                                             (90) 

 

 𝐾 =
1

√3
𝜎𝑦                                              (91) 

 

 

The Von Mises stress can be rewritten as: 

 

 √𝐽2 =
𝜎𝑦

√3
                                        (92) 

 

 

 √
3

2
𝑆𝑖𝑗𝑆𝑖𝑗 = 𝜎𝑦 = 𝜎𝑒                                (93) 

 

 

 

Where 𝜎𝑒 is called equivalent stress. Yielding occurs when equivalent stress 𝜎𝑒 exceed 

the uniaxial yield point 𝜎𝑦. 𝜎𝑒 can be expressed in  stress tensor components as [58]: 

 

 𝜎𝑒 = √
1

2
(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎33 − 𝜎11)

2 + 6(𝜎12
2 + 𝜎23

2 + 𝜎31
2 )   (94) 
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Von Mises yield criterion is the most commonly used for metals, it is visualized in three 

dimensional stress space as a circular cylinder. In the case of unyielded material the axis 

of the cylinder passes through the origin of the coordenates. It lies at equal amounts to the 

three coordinate axes and represents pure hydrostatic stress (i.e, σ1 = σ2 = σ3). 

2.2.1.2 Maximum Shear Stress Theory (Tresca) 

Tresca theory define yielding as a condition when the maximum shear stress at a point 

reach the same value of maximum shear stress at yield in a uniaxial tension given by. 

 

 𝜏𝑚𝑎𝑥 =
𝜎1 − 𝜎3

2
=

𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
                                            (95) 

 

 

Figure 29 shows graphically the shape of the Von Mises’s and Tresca’s yield surfaces, 

Tresca yield theory is considered to be more conservative than Von Mises [59]. 

 

 

Figure 29 Von Mises/Tresca Yield Surfaces in Principal Stress Coordinates [59]. 
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Eq. (94) is a general from of Von Mises equation, it can be reduced based of the loading 

condition. In case of uniaxial loading condition, 𝜎11 ≠ 0,  𝜎22 = 𝜎33 = 0 ,Eq.(62) can be 

reduced to a simple from to: 

 

 

 𝜎1 = 𝜎𝑒 (96) 

 

Table 4 summarizes Von Mises equation for different stress conditions 

 

 

 

 

Table 4 Summary of Von Mises Criterion at Different Stress Conditions 

Load Restrictions Corresponding Von Mises equation 

General No 𝜎𝑒 = √
1

2
(𝜎11 − 𝜎22)

2 + (𝜎22 − 𝜎33)
2 + (𝜎33 − 𝜎11)

2 + 6(𝜎12
2 + 𝜎23

2 + 𝜎31
2 ) 

 

Principal 

stress 

 

𝜎12 = 𝜎13 = 𝜎23 = 0 𝜎𝑒 =  √
1

2
(𝜎1 − 𝜎2)

2 + (𝜎1 − 𝜎3)
2 + (𝜎2 − 𝜎3)

2 

 

Plane stress 
𝜎3 = 0 

𝜎12 = 𝜎13 = 𝜎23 = 0 𝜎𝑒 = √𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 + 3𝜎12
2  

 

Pricipal plane 

stress 

𝜎3 = 0 

𝜎12 = 𝜎13 = 𝜎23 = 0 
𝜎𝑒 = √𝜎1

2 − 𝜎1𝜎2 + 𝜎2
2 

 

Pure shear 

𝜎1 = 𝜎2 = 𝜎3 = 0 

𝜎13 = 𝜎23 = 0 𝜎𝑒 = √𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 

 

 

Uniaxial 
𝜎2 = 𝜎3 = 0 

𝜎12 = 𝜎13 = 𝜎23 = 0 

𝜎𝑒 = 𝜎1 
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2.2.2 Isotropic and Kinematic Hardening 

When a solid material is plastically deformed by exceeding the elastic limit and then 

unloaded followed by reloading it does not yield at the same previous load level, since a 

plastic flow resistance has been induced in the material. This behavior called “strain 

hardening” 

Usually in finite element materials model, two approaches are used; isotropic hardening 

and kinematic hardening. 

2.2.2.1 Isotropic Hardening 

Isotropic hardening occurs when a plastic material is loaded in tension past its yield stress 

which is followed by a compressive load does not yield until it reaches the same load level 

in tension. In other word, when the yield stress increases due to hardening the compression 

yield stress grows by the same value. 

The yield surface grows in size but the origin does not move. As shown in Figure 30. This 

type of hardening is unusual in metallic materials. 

 

 

Figure 30 Schematic Representation of Isotropic Hardening “same shape, different size" 

σ2 

σ1 

Initial yield surface 

Expanded yield surface 
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2.2.2.2 Kinematic Hardening 

In kinematic hardening the material yields in compression at a lower level than the tension 

yield stress level, (it follows the Bauschinger effect). In reality most metals exhibit 

kinematic hardening and some isotropic hardening. Figure 31 shows schematically the 

kinematic hardening behavior. Figure 32 shows the difference between isotropic and 

kinematic hardening when the material is subjected to cyclic loading condition. 

It is convenient to describe some existing hardening models, along with their advantages 

and drawback. 

 

 

 

  

 

Figure 31 Kinematic Hardening Representation "same shape, same size" 

 

 

σ2 

σ1 
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Figure 32 Isotropic and Kinematic Hardening under Cyclic Loading 

2.2.2.3 Prager Rule 

Prager [60] (1955), introduced the term “kinematic hardening” and proposed the first 

kinematic hardening model. As described earlier in kinematic hardening the assumption 

is that during plastic loading the yield surface translate in stress space without a change in 

shape or size. This behavior predicts the Bauschinger effect in uniaxial tension and 

compression.  

When the initial yield surface described by: 

 

 𝐹 = 𝑓(𝜎) − 𝑘 = 0                                                            (97) 

 

 

So, due to the kinematic hardening the subsequent yield surface takes the form of: 

 

 𝑓(𝜎 − 𝛼) − 𝑘 = 0                                                    (98) 

 

 

σ 

ε 

Kinematic 

Isotropic hardening 

2σmax 

σy
ʹ 

2σy
ʹ 
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Where α, is a hardening parameter that is called back stress. The back stress represent the 

center of the yield surface in the stress space; 𝑘, is a material property that is related to 

the size of the yield surface. As 𝛼,changes due to plastic strain hardening, the yield 

surface translate in the stress space without a change in initial shape or size. Prager 

proposed a linear equation for the back stress 𝛼, as: 

 

 𝑑𝛼 = 𝐶𝑑𝜀𝑝                                                           (99) 

 

 

Where 𝐶 is a material constant derived from the monotonic uniaxial curve. This model 

states that the yield surface retains its initial shape and size and moves in the direction of 

strain increment with the direction of normal to the yield surface that is defined by Eq. 

(100): 

 

 𝑑𝛼 = 𝐶𝜆̇
𝜕𝐹

𝜕𝜎
                                                    (100) 

 

 

Where 𝜆̇, is the proportional positive scalar factor, and is determined using the yield 

criterion. 

2.2.2.4 Armstrong and Frederick 

Armstrong and Frederick (1966) proposed a model which simulates the multiaxial 

Bauschinger effect [61]. When compared to experimental results the model exhibits 

better accuracy than Prager’s model. It is based on the assumption that the most recent 

part of the strain history of material effects the mechanical behavior. Armstrong-

Frederick added a memory term to the Prager’s rule as in Eq. (101): 

 

 𝑑𝛼 =
2

3
𝐶𝑑𝜀𝑝 − 𝛾𝛼𝑑𝑝                                        (101) 
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Where C and γ are material parameters, dp, is an increment of accumulated plastic strain 

given by Eq. (102): 

 

 𝑑𝑝 = √
2𝑑𝜀𝑝: 𝑑𝜀𝑝

3
                                      (102) 

 

 

2.2.2.5 Mroz Model 

The kinematic hardening rule commonly used in fatigue is the Mroz kinematic hardening 

rule. Mroz  [62, 63], (1967, 1969), proposed a multi-surface model by defining a field of 

different plastic modulus in the stress space in order to obtain a better approximation of 

the stress-strain curve and generalize the plastic modulus in multiaxial case. 

During plastic loading, the stress surfaces are activated subsequently and move until the 

stress point meets the next stress inactive stress surface. When the stress point meets a 

stress surface, this surface active. By increasing the load, the active surface and entire, 

previously activated surface (inner surface) move together until unloading occurs. 

To define the movement direction of active stress surface, the steps in the non-

proportional loading are as follow: 

1. Find a similar point on the next surface that has the same normal vector as the 

current normal vector. 

 

 
𝑆𝑖𝑗

∗ =
𝑅𝑘+1

𝑅𝑘
(𝑆𝑖𝑗 − 𝑎𝑖𝑗) + 𝑎𝑖𝑗

𝑘+1 

 

(103) 

Where: 

a) 𝑆𝑖𝑗
∗ , is the point of the next stress surface. 

b) 𝑅, stress value at the end of ith surface. 

c) 𝑎𝑖𝑗, tensor of yield surface. 

d) 𝑘, plastic tangent modulus. 

2. Determine the direction of the center of active surface. 
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𝑑𝑎𝑖𝑗

𝑘 = 𝑑𝜂(𝑆𝑖𝑗
∗ − 𝑆𝑖𝑗) 

 
(104) 

Where: 𝜂, is normal vector on the active yield surface. 

3. Other inner surfaces, 1 < 𝑘 < 𝑘 − 1, need to be in touch with the active 

surface during plastic loading. In this case, the back stress of the other internal 

defined as: 

 

 𝑎𝑖𝑗
𝑟 = 𝑆𝑖𝑗 − √

2

3
𝑅𝑟𝑛𝑖𝑗,   1 < 𝑟 < 𝑘 − 1 (105) 

 

2.2.2.6 Garud   

Garud [64], (1981), noticed that there is a possibility of intersection of Mroz model yield 

surfaces under certain loadings, therefore, Garud proposed a modified Mroz model to 

prevent such intersection. Movement of the surfaces in Garud’s model is dependent on 

the stress direction. The following steps are needed to determine the Garud model: 

1. Find the normal vector on the next surface 

 

 𝑛𝑖𝑗
𝐵 = √

3

2

𝑆𝑖𝑗
𝐵 − 𝑎𝑖𝑗

𝑘+1

𝑅𝑘+1
 (106) 

 

2. Find the stress point on the next inactive surface. 

 

 𝑆𝑖𝑗
∗ = √

2

3
𝑅𝑘𝑛𝑖𝑗

∗ + 𝑎𝑖𝑗
𝑘  (107) 

 

3. Determine the direction of the center of active surface. 

  (108) 

𝑑𝑎𝑖𝑗
𝑘 = 𝑑𝜂(𝑆𝑖𝑗

𝐵 − 𝑆𝑖𝑗
∗ ) 

 Chu [65], (1984), proposed an infinite surface model that does not require a discrete 

number of surfaces. Chu’s model only requires position and radius for the current active 

surface. 
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2.2.2.7 Wang and Ohno 

The model proposed by Wang and Ohno (1991), [66] Eq. (109) is based on the nonlinear 

kinematic hardening rule of Armstrong-Frederick [61], the model demonstrates the effect 

of two terms, temperature and reliable translation. 

 

 𝑑𝑝(𝑖) = 𝐻(𝑓𝑖) 〈𝑑𝜀𝑝:
𝑎(𝑖)

𝑎̅𝑖

〉                                                   (109) 

 

 

Where  𝑎̅𝑖 = √
3

2
𝑎(𝑖): 𝑎(𝑖)  , 𝑓𝑖 = 𝑎̅𝑖

2 − (
𝐶𝑖

𝛾𝑖
)
2

 and 𝐻(𝑓𝑖) denotes Heavyside step function. 

On (1993) Wang and Ohno [67] proposed another model given by Eq. (110): 

 

 𝑑𝑝(𝑖) = (
𝑎̅𝑖

𝐶𝑖
𝛾𝑖

⁄
)

𝑚𝑖

〈𝑑𝜀𝑝:
𝑎(𝑖)

𝑎̅𝑖

〉                                      (110) 

 

2.2.2.8 Chaboche 

The yield function for nonlinear kinematic hardening model is expressed in Eq. (111) as: 

 

 𝐹 = √
3

2
(𝑆𝑖𝑗 − 𝛼𝑖𝑗): (𝑆𝑖𝑗 − 𝛼𝑖𝑗) − 𝜎𝑦               (111) 

 

 

Where 𝑆𝑖𝑗 is the deviatoric stress, 𝛼𝑖𝑗 refers to the back stress and 𝜎𝑦 is the yield stress 

obtained from the yield surface. 

According to Chaboche model [68] the back stress α can be calculated using Eq. 

(112),(113) as: 
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 {𝛼} = ∑{𝛼𝑖}

𝑛

𝑖=1

                                                             (112) 

 

 

 {∆𝛼}𝑖 =
2

3
𝐶𝑖{∆𝜀𝑝𝑙} − 𝛾𝑖{𝛼𝑖}∆𝜀̂𝑝𝑙 +

1

𝐶𝑖

𝑑𝐶𝑖

𝑑𝜃
∆𝜃{𝛼𝑖}                                (113) 

 

 

Where 𝜀̂𝑝𝑙 is the accumulated plastic strain, 𝜃 is temperature, 𝐶𝑖 and 𝛾𝑖 are the Chaboche 

material parameters for n number of pairs, (back stress versus plastic strain). 

2.2.2.9 Initial Hardening Modulus 

When n=1, 𝐶1 represent the initial hardening modulus. If 𝛾𝑖 is set to zero, in this case the 

parameter 𝐶1 represent the slope of stress versus equivalent plastic strain. This is called 

linear kinematic hardening model as shown in Figure 33 and Figure 34. 

It should be noted that there is a difference between the tangent modulus 𝐸𝑡𝑎𝑛 which is 

based on the relationship between stress and total strain and 𝐶1 obtained using equivalent 

plastic strain. There is a relationship between the two expressions given by: 

 
𝐸𝑡𝑎𝑛 =

𝜎 − 𝜎𝑦

𝜎 − 𝜎𝑦

𝐶1
+

𝜎
𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐

−
𝜎𝑦

𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐

                                              
(114) 
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Figure 33 Schematic Representation of Linear Kinematic Hardening 

 

 
Figure 34 Stress-Strain Behavior of Linear Kinematic Hardening Model. 
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2.2.2.10 Nonlinear Recall Parameters 

The other material parameter in Chaboche model is 𝛾𝑖, which indicates the rate of 

hardening decreases with increasing plastic strain. The Chaboche back stress in Eq. (113) 

indicates that the back stress increment lowers as plastic strain gets higher. 
𝐶𝑖

𝛾𝑖
⁄  refers to 

a limiting value where the yield surface cannot translate anymore.  

For a non-zero γ1 parameter, the hardening modulus starts with same value as the linear 

kinematic hardening and keep decreasing until it reaches zero value at a high plastic 

strain value, this is known as the limiting or asymptotic value. This behavior is 

schematically represented in Figure 35 and Figure 36. 

 

 

 

Figure 35 Small Strain 
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Figure 36 High Strain 

 

2.2.2.11 Multiple Kinematic Hardening Models 

In some cases the single nonlinear kinematic hardening model described by two material 

parameters, C1 and γ1 is not sufficient to describe the complex response of a given material. 

In this situation n can be increased to a higher value, most finite element packages use n 

values up to 5, which corresponds to γ1, γ2, γ3, γ4, γ5 and C1, C2, C3, C4, C5. 

Figure 37 shows a comparison of three results of stress versus plastic strain as: 

 

1. Case I, represent linear kinematic hardening. 

2. Case II, single nonlinear kinematic. 

3. Case III, two material parameters nonlinear kinematic hardening. 
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Figure 37 Effect of Kinematic Hardening Parameters Numbers 

 

2.2.3 Identification of Parameter 

The most challenging issue for researchers and designers is to identify the constants 

associated with any proposed material model and obtain better estimation of these 

parameters. The identification procedure for the material constants that describe the 

backstress evolution equation is based on experimental data results. Stabilized cycle 

behaviors is usually used for this purpose. If limited test data are available, C and γ can 

be estimated from the stress – strain data obtained from half cycle uniaxial tension or 

compression experiments as shown in Figure 38. 

γ = 0, C = ET 

 

, 

γ1, C1 

γ1, γ2, C1, C2 
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Figure 38 Half Cycle of Stress-Strain Data 

 

 

For each data point (𝜎1𝜀𝑖
𝑝𝑙

) a value of 𝛼𝑖 (𝛼𝑖 is the overall backstress obtained by 

summing all the backstresses at this data point) is obtained from the test data as in 

Eq.(115): 

 

 𝛼𝑖 = 𝜎𝑖 − 𝜎𝑖
0                                                        (115) 

 

 

Where, 𝜎𝑖
0 is the yield surface size defined by the user at the corresponding plastic strain 

for the isotropic hardening component or the initial yield stress if the isotropic hardening 

component is not defined. 

𝛼 =
2

3⁄ 𝐶

𝛾
 

𝛼 

𝜎𝑦 + 𝑅 𝜎1, 𝜀1
𝑝𝑙 

𝜎2, 𝜀2
𝑝𝑙 

𝜎3, 𝜀3
𝑝𝑙 

𝜎 

𝜀 
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Integration of the backstress evolution laws over a half cycle leads to the expressions 

given by Eq. (116) : 

 

 𝛼𝑖 =
𝐶

𝛾
(1 − 𝑒−𝛾𝜀𝑝𝑙

)                                                    (116) 

 

 

Which is used for calibrating C and γ. 

According to Chaboche approach the material parameters  𝐶𝑖 and 𝛾𝑖 can be obtained from 

the tension- compression stabilized hysteresis loops which correspond to different strain 

amplitudes. A numerical or graphical method can be used in this case. 

The method can be summarized in five steps as follow: 

 

1. Determine the yield stress from the elastic domain which is usually the half of 

elastic domain size. 

2. Determine the plastic strain range ∆𝜀𝑝𝑙. 

3. Determine the stress range Δσ. 

4. Estimate the asymptotic value of  
𝐶𝑖

𝛾𝑖
⁄   by plotting (Δσ/2 - σy) against (∆𝜀𝑝𝑙

2⁄ ) . 

5. Using the expression  
∆𝜎

2
− 𝜎𝑦 =

𝐶𝑖

𝛾𝑖
𝑡𝑎𝑛ℎ (𝛾𝑖

∆𝜀𝑝𝑙

2⁄ ) , using curve fitting to 

determine 𝐶𝑖 and 𝛾𝑖. 

Graphical representation of the above steps are shown in Figure 39. 
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Figure 39 Identification of Coefficients C and γ from Three Tension-Compression Cycles 

of Different Strain Amplitudes. 

  

2.2.4 Combined Kinematic-Isotropic Hardening Model 

In practice the real plastic behavior for metallic materials does not purely follow the 

nonlinear kinematic hardening model , the yield surface not only translate but has both 

behaviors translation and expantion, in this case the isotropic behavior should be 

included. To reach a maximum accuracy a combined model is used which is a 

combination of nonlinear kinematic and nonlinear isotropic hardening model. The plastic 

strain increment is decomposed into two components as in Eq. (117): 

 

 𝑑𝜀𝑖𝑗
𝑝 = 𝑑𝜀𝑖𝑗

𝑖 + 𝑑𝜀𝑖𝑗
𝑘                                                                   (117) 

 

Where 𝑑𝜀𝑖𝑗
𝑖  and 𝑑𝜀𝑖𝑗

𝑘  refers to isotropic expansion and kinematic translation of the yield 

surface respectively. When the temperature term is omitted, the model takes the form for 

each backstress: 
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 𝛼̇𝑘 = 𝐶𝑘

1

𝜎0

(𝜎 − 𝛼)𝜀𝑝𝑙 − 𝛾𝑘𝛼𝑘𝜀
𝑝𝑙                                                  (118) 

 

Where 𝜎0 defines the size of the yield surface. 

2.2.5 Multiaxial State of Stress 

Multiaxial states of stress and strain cannot be avoided in most engineering applications, 

for example: 

1. In a tensile bar the state of strain is triaxial. 

2. In most shafts the state of stress is biaxial. 

3. For a thin-walled pressure vessel subjected to cyclic pressure the state of stress is 

biaxial.  

Usually the state of stress in notches is multiaxial and it is not the same as the main 

body. The state of stress-strain at the root of bolt is biaxial but the state at the main body 

may be uniaxial. 

The state of stress and strain at arbitrary point in the body can be described using six 

stress components (σx, σy ,σz, τxy, τxz, τyz) and six strain components (εx, εy, εz, γxy, γxz, γyz) 

acting on orthogonal planes x, y, and z. defining stress or strain at any other direction can 

be done by using transformation equations or in some cases graphically by using Mohr’s 

circle. In fatigue there are important magnitudes and directions where maximum stress 

and strains developed and failure can be expected: 

 Maximum normal principal stress, σ1. 

 Maximum shear stress, τmax. 

 Maximum octahedral shear stress,τoct. 

 Maximum normal principal strain, ε1. 

 Maximum shear strain, γmax. 

 Maximum octahedral shear strain,γoct. 

2.2.6 Finite Element Analysis 

Finite element method recently becomes a powerful technique for numerical solution of 

many engineering problems. With the aid of advanced computer technology and CAD 
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systems a complex structures can be modeled and analyzed. In automotive industry this 

technique is used mainly for elastic-plastic analysis of structures. A constitutive model is 

employed to capture the material response “stress and strain” at each integration point 

called local integration. Structural response is the product or a combination of all local 

integration points it is called global integration. Local and global integrations are carried 

out simultaneously. The level of accuracy for structural solution mainly relies on the 

accuracy of calculations at the local integration points. In finite element the model body is 

divided into an equivalent system of many smaller units “finite elements” interconnected 

to points common to two or more elements “nodes” [69] Figure 40.  

 

Figure 40 Some Types of Elements in ABAQUS 

 

 
 

Continum (Solid element) Shell element 

Beam element 
Rigid element 
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 STATEMENT OF PROBLEM AND THEORY 

 The Strain-Life Prediction Model 

The original form of Universal Slopes Equation was proposed by Manson and Hirschberg 

in 1965 Eq. (119), [27] as: 

 

 ∆𝜀 = 3.5
𝜎𝑢

𝐸
(𝑁𝑓)

−0.12
+ [

𝑁𝑓

𝐷
]
−0.6

 (119) 

Where  ∆𝜀 = total strain range 

𝑁𝑓 = fatigue life 

𝐷 = ductility 

𝜎𝑢 = ultimate tensile strength 

The slopes of elastic and plastic lines were universalized as -0.12 and -0.6 for all materials. 

U. Muralidharan and Manson [30], modified Eq. (119) and proposed the Modified 

Universal slopes equation. Their work started with a general form as shown in Eq. (120): 

 

 ∆𝜀 =  𝐴1𝐷
𝛼1 [

𝜎𝑢

𝐸
]
𝛽1

(𝑁𝑓)
𝛾1

+ 𝐴2𝐷
𝛼2 [

𝜎𝑢

𝐸
]
𝛽2

(𝑁𝑓)
𝛾2

 (120) 

 

𝛾1 and 𝛾2 exponents are assumed to be constant for all materials. The coefficients are 

generalized and allowed to be power functions of ductility (D), ultimate tensile strength 𝜎𝑢  

and modulus of elasticity (E), for both elastic and plastic components. Optimization for the 

constants by the least squares method using 47 different materials results in the final form 

of Modified Universal Slopes method shown in Eq. (121). 

 

 
∆𝜀

2
= 0.623 (

𝜎𝑢

𝐸
)
0.832

(𝑁𝑓)
−0.09

+  0.0196(𝜀𝑓)
0.155

(
𝜎𝑢

𝐸
)
−0.53

(2𝑁𝑓)
−0.56

 (121) 

 

The above study showed that the effect of ductility (D) on the elastic line is negligible, so 

it is eliminated from the elastic part of Eq. (119). For the plastic component the effect of 

ductility become less important and the exponent reduced from 0.6 to 0.155. It was found 
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that the ratio  (
𝜎𝑢

𝐸
) has a high effect on both elastic and plastic components. The universal 

slopes which were -0.6 and -0.12 have become -0.53 and -0.09 respectively. 

3.1.1 Objectives  

One of the objectives of this thesis is to develop a prediction model that predicts cyclic 

deformation properties using Brinell hardness HB, the reason being that hardness test is a 

nondestructive test and hence easy to obtain. Hence it is advantages to use Brinell hardness 

(HB) instead of ultimate tensile (Su) strength in Modified Universal Slopes method with 

optimization of the coefficients. Out of several estimation methods the Modified Universal 

Slopes method Eq. (121) was selected based on estimation studies made on the existing 

prediction methods which show that this model is the most recommended for prediction of 

fatigue life of steels. The Modified Universal Slopes model predicts cyclic properties based 

on ultimate tensile strength (𝜎𝑢), modulus of elasticity (E) and fracture ductility (𝜀𝑓). 

Since ultimate tensile strength strongly correlates to brinell hardness, “Roessel and Fatemi” 

proposed a correlation model with R2 = 0.96 [15]. Hence, it is possible to use an estimated 

value of ultimate tensile strength from Brinell hardness in the Modified Universal Slopes 

method. The first stage in this study was to find a high correlation model similar to Roessel-

Fatemi model between Brinell hardness and ultimate tensile strength, and then this value 

will be substituted in the Modified Universal Slopes method.The constants where then 

optimized using experimental data. In this case the fatigue parameters were predicted using 

Brinell hardness (HB), modulus of elasticity (E) and fracture ductility (𝜀𝑓).   

 

The true fracture ductility (𝜀𝑓) still undesirable term in the model because it is not always 

available in the data, however, it was stated in the previous section that the effect of this 

term has less importance than indicated by the earlier Universal Slopes equation [27]. 

 In general this term ranges from 0.15 to 1.5 for steels; and the value of ( 𝜀𝑓
.155) ranges from 

0.75 to 1.02 with an average value of 0.9, this term still needs further investigations, so that 

it can be replaced by an approximate constant value.  

To validate the proposed method it was compared with the original method Eq. (108) and 

experimental data values, different data sources including low, medium, and high strength 
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steels were used. Matlab was used to solve for the number of cycles to failure for each 

strain amplitude value. 

 Notch Strain Prediction Models. 

Eq. (121) can be used for a smooth specimen where the differences between the nominal 

and local stresses and strains are negligible, however, in case of notched components 

which are most common the differences are significant, in this case the local strain 

amplitude has to be predicted. One of the objectives of this study was to create a notch 

root stress-strain prediction model based on using a combination of elastic finite element 

analysis and Neuber’s prediction method Eq. (42).  

The aim is to simplify the notch root predictions by introducing an alternative method 

which rely on a linear finite element analysis which is accurate and easy to conduct with 

the aid of Neuber’s analytical method, this saves time and cost compared with an expensive 

and time consuming elasto-plastic finite element analysis where the definition of materials 

constants is a challenge. The proposed model was compared with elastic-plastic finite 

element analysis. The elastic and elasto-plastic was obtained using ABAQUS 6.13 

software, and the materials cyclic properties experimental data sources used in ABAQUS 

elasto-plastic analysis are: 

 

 American Iron and Steel Institute (AISI) [24] 

  Metals data for cyclic loading [16] 
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3.2.1 Notch Geometry 

To investigate the cyclic loading behavior two different geometries were used. A double 

notched plate geometry with a notch depth of 6.35 mm and notch radius of 2.778 mm to 

create the plane stress condition and a round bar with a grove of radius 1.588 mm notch 

radius to create the plane strain condition. Figure 41.shows the two geometric 

configurations used in this study, where (a) represent the plane stress condition and (b) 

reflect the plane strain condition  

 

 

 

Figure 41 Notched Configurations (a) Notched Plate with 2.77 mm Radius (b) Circumference 

Notched Round bar with 1.588 mm Radius 

 

 

 

 

 

 

(a) 

(b) 
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 PERFORMING PREDICTION METHODS 

 Perform fatigue properties estimation model 

As mentioned earlier, Park and Song [33] compared different approaches of prediction 

fatigue life using monotonic tensile properties. Three methods have been compared, the 

Modified Universal Slopes, Seeger’s, and Ong’s method, the three methods give 

reasonably good life predictions. Among them, the Modified Universal Slopes method 

gives the best results. Consequently, the Modified Universal Slopes method can be 

recommended as one of the best estimation methods that are currently available [70]. 

The Modified Universal Slopes method proposed by Muraliharan and Manson [30] 

predicts fatigue properties using ultimate tensile strength (Su), true fracture ductility (ɛf) 

and modulus of elasticity (E), and is given by Eq. (121) 

In this method fatigue strength exponent b and fatigue ductility exponent c, are 

approximated by a constant of values -0.09 and -0.56 respectively. 

4.1.1 Correlations Among Tensile Data  

As stated earlier, it is desirable to estimate fatigue properties of materials from material 

properties that are quick and easy to obtain, with a reasonable degree of accuracy, such as 

hardness and ultimate tensile strength. 

The well-known approximation of the ultimate tensile strength, Su from Brinell hardness, 

HB, for low and medium strength carbon and alloy steel is presented by a linear relationship 

given by Eq. (23)     

Eq. (23) agrees well with experimental data for HB < 350, [14]. A nonlinear approach 

proposed by Roessle and Fatemi, correlates Su and hardness using fatigue properties of 20 

steels commonly used in the ground vehicle industry as follow [15]: 

 𝑆𝑢 = 0.0012(𝐻𝐵)2 + 3.3(𝐻𝐵) (𝑀𝑃𝑎)                                (122) 

 

In this study, an extensive data from 246 various steels selected from the American Society 

for Metals (ASM) reference book [71] was used. The materials used cover the ultimate 
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tensile strength values range from (386 to 2034) MPa and Brinell hardness range from (111 

to 555) MPa, this range covers most of steels used in automotive industry, part of these 

data is shown in Table 5, the rest is tabulated in appendix A. Different nonlinear functions 

been used in order to reach the best correlation between Brinell hardness HB and ultimate 

tensile strength Su. A least squares fit results in an exponential relationship as: 

 𝑆𝑢 = 320𝑒0.0036𝐻𝐵     𝑀𝑃𝑎 (123) 

Where, HB is the Brinell hardness in MPa. 

An extensive application of Eq. (123) on each experimental data shows that it is need to be 

modified to enhance the accuracy. Many modified equations has been produced and the 

most accurate one has the following form:   

 

 𝑆𝑢 = {410〈(𝑒𝑥𝑝(0.00155𝐻𝐵))2.1〉 − 150} (𝑀𝑃𝑎)                (124) 

 

Eq. (124), was applied on 246 different steels to predict the ultimate tensile strength from 

Brinell hardness HB, the results are compared with Roessle-Fatemi’s prediction method. 

Also the ratios of (predicted/experimental) ultimate tensile strength values are calculated. 

The produced data from proposed as well as Roessle-Fatemi’s methods are compared 

with experimental data, part of the produced results were shown in Table 5, the rest of 

data is shown in appendix A. The closest the (predicted Su/experimental Su) ratio to one 

the better prediction capability, the ratio of one is the optimum value. 
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Table 5 Ultimate Tensile Strength Values Obtained from Proposed Method and Rossel-

Fatemi Compared with Experimental Data 

Number AISI 
Treat. 

Temp. C0 
HB Su (Exp.) Su (Prop.) 

Su (Prop.)/Su 

(Exp.) 
Su(R-F) 

Su (R-F)/Su 

(Exp.) 

1 1015 ….. 126 420 468 1.11 435 1.04 

2 1015 925 121 424 458 1.08 417 0.98 

3 1015 870 111 386 438 1.14 381 0.99 

4 1020 …. 143 448 503 1.12 496 1.11 

5 1020 870 131 441 478 1.08 453 1.03 

6 1020 870 111 394 438 1.11 381 0.97 

7 1022 925 143 482 503 1.04 496 1.03 

8 1022 870 137 429 490 1.14 475 1.11 

9 1030 … 179 551 584 1.06 629 1.14 

10 1030 845 126 463 468 1.01 435 0.94 

11 1040 … 201 620 639 1.03 712 1.15 

12 1040 900 170 589 563 0.96 596 1.01 

13 1040 790 149 518 516 1.00 518 1.00 

14 1050 …. 229 723 714 0.99 819 1.13 

15 1050 900 217 748 681 0.91 773 1.03 

16 1050 790 187 636 604 0.95 659 1.04 

17 1060 …. 241 813 749 0.92 865 1.06 

18 1060 790 179 625 584 0.93 629 1.01 

19 1080 … 293 965 914 0.95 1070 1.11 

20 1080 900 293 1010 914 0.91 1070 1.06 

 

To validate the proposed relationship a qualitative as well as a quantitative analysis were 

conducted, the results were compared with the best model in the literature. Evaluation of 

estimation methods for strain-life fatigue properties from hardness conducted by Kwang-

Soo Lee at al., reveals that among 4 existing methods for estimating ultimate tensile 

strength from hardness, the Roessle-Fatemi’s method Eq. (122) provides the most 

reasonable estimation results. Figure 42 shows a plot of predicted versus experimental 

ultimate tensile strength values using proposed method in Eq. (124) together with Roessel-

Fatemi’s correlation Eq. (122). In Figure 43, the ratio of estimated/experimental ultimate 

tensile strength plotted versus the Brinell hardness HB, where the dashed lines indicate a 

factor of ± 10% scatter band.  



www.manaraa.com

82 

 

Eq. (124) covers a range of hardness from, 150 (HB) to 550 (HB) and with ultimate tensile 

strength that range from 386 (MPa) to 2034 (MPa).  

 

Figure 42 Predicted vs Experimental Ultimate Tensile Strength 

 

Figure 43 Estimated, Experimental Data Ratio versus Brinell Hardness (HB) 
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The results obtained in Figure 42 and Figure 43 are useful for evaluating the Su – HB 

estimation methods, but give only qualitative information. For quantitative evaluation the 

following three terms; error criterion, mean value and coefficient of variance were used. 

 
𝐸𝑓(𝑠=10%)

=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑤𝑖𝑡ℎ𝑖𝑛 0.9 ≤
(𝑆𝑢)𝑃𝑟𝑒𝑑.

(𝑆𝑢)𝐸𝑥𝑝.
≤ 1.1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎
 

(125) 

 

 𝑀𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 = 𝑀𝑒𝑎𝑛 𝑜𝑓 
(𝜎𝑃𝑟𝑜𝑝.)

(𝜎𝐸𝑥𝑝.)
 (126) 

 

 

 𝐶𝑉 (𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
 (127) 

 

𝐸𝑓 is the error criterion which is usually used to evaluate the estimation methods. It is 

evaluates the accuracy of estimation in terms of fraction of data that falls within a scatter 

band of a specified factor S. The mean value of data is employed as additional value 

because the error criterion 𝐸𝑓 is not enough to evaluate the deviation of data value from 

the optimum value of   
(𝜎𝑃𝑟𝑜𝑝.)

(𝜎𝐸𝑥𝑝.)
= 1. The coefficient of variance is another measure of 

normalized scatter. The closer the 𝐸𝑓 is to 1, the better the estimation and it is true for the 

other two items, the mean and coefficient of variance. 

 𝐸𝑚𝑒𝑎𝑛 = 1 − |1 − 𝑚𝑒𝑎𝑛| (128) 
 

 𝐸𝐶𝑉 = 1 − |𝐶𝑉| (129) 

 

By assuming that the three evaluation values are equally important, the total evaluation is 

made using the mean values of E values defined as: 

 𝐸̅ =
𝐸𝑓 + 𝐸𝑚𝑒𝑎𝑛 + 𝐸𝐶𝑉

3
 (130) 
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Table 6 shows the comparisons of estimation methods in terms of evaluation values 

described. 

Table 6 Estimated Ultimate Tensile Strength Quantitative Analysis 

 

As mentioned in the earlier the fatigue material parameters as predicted in Modified 

Universal Slopes Method using ultimate tensile strength, modulus of elasticity and true 

fracture ductility are obtained using the Eq. (131) and (132).  

 𝜎𝑓(𝑀)
′ = .623𝐸 (

𝑆𝑢

𝐸
)

.832

 (131) 

 

 𝜀𝑓(𝑀)
′ = .0196(𝜀𝑓)

0.155
(
𝑆𝑢

𝐸
)
−.53

 (132) 

 

Where 𝜎𝑓(𝑀)
′  and 𝜀𝑓(𝑀)

′  are the fatigue strength coefficient and fatigue ductility coefficient 

respectively. 

In this study, Brinell hardness is used instead of ultimate tensile strength based on the 

correlation proposed in Eq. (124).The optimization of the coefficients after substitution of 

ultimate tensile strength by Brinell hardness in Eq. (131) and Eq. (132) results in a new 

prediction model in equations Eq. (133), (134). 

 𝜎′𝑓(𝑝) = 28.74(𝐸) (
[4.1(𝑒𝑥𝑝(. 00155𝐻𝐵))2.1 − 1.5]

𝐸
)

.832

 (133) 

E values Proposed method Roessle-Fatemi 

𝑬𝒇(𝒔=𝟏𝟎%) 0.882 0.695 

𝑬𝒎𝒆𝒂𝒏 0.98 0.917 

𝑬𝑪𝑽 0.927 0.942 

𝑬̅ 0.931 0.852 
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 𝜀′𝑓(𝑝) = .0017(𝜀𝑓)
.155

[
[4.1(𝑒𝑥𝑝(. 00155𝐻𝐵))2.1 − 1.5]

𝐸
]

−.53

 (134) 

 

Where 𝜎′𝑓(𝑝) and 𝜀′𝑓(𝑝) are the proposed method fatigue strength coefficient and fatigue 

ductility coefficient respectively.   

The final form of the proposed method is provided in Eq. (135) 

        

∆𝜀

2
= 28.74 (

[4.1(exp(. 00155 ∗ 𝐻𝐵))2.1 − 1.5]

𝐸
)

.832

(2𝑁𝑓)
−.09

+ .0017(𝜀𝑓)
.155

(
[4.1(exp(. 00155 ∗ 𝐻𝐵))2.1 − 1.5]

𝐸
)

−.53

(2𝑁𝑓)
−.56

 

(135) 

 

The new approach eliminates ultimate tensile strength from the original model, where it 

replaced by the Brinell hardness. Hardness can be measured nondestructively even for in-

service component, but measuring ultimate tensile strength is a destructive testing that 

needs a prepared specimen. Based on the new model, fatigue parameters can now be 

predicted by knowing the hardness, the modulus of elasticity, and the true fracture ductility. 

The true fracture ductility (ɛf) is still an undesirable term in this method because it is not 

always available in the data. According to   (Meggiolaro, Castro) comprehensive study on 

the evaluation of the strain-life prediction methods, it is concluded that the correlation of 

(ε′f) with monotonic cyclic properties is poor, it is recommended that this term is replaced 

with a constant value.   In general this term ranges from 0.15 to 1.3 for steels; and the value 

of (ɛf)
 0.155 ranges from 0.75 to 1.02 with an average value of 0.9.  

4.1.2 Evaluation of the Proposed Strain-Life Estimation Method. 

4.1.2.1 Qualitative Evaluation 

To evaluate the prediction capabilities of the proposed method given by Eq. (135), it is 

compared with the Modified Universal slopes method given by Eq. (121) and a real 

experimental fatigue data. 52 different steels including low, medium and high strength 

steels from different data sources including J1099, ASM, AISI and material data for cyclic 
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loading, were used, the constant amplitude fatigue tests were performed according to the 

ASTM Standard E606 [72]. These steels cover the cyclic hardening/softening 

characteristics, Brinell hardness ranges from 150 (HB) to 660 (HB), and the ultimate tensile 

strength is ranges from 300 to 2500 (MPa). 

Strain amplitudes data obtained from strain-life curve for each material at fatigue lives that 

range from 103 to 106 reversals. Log strain amplitude of (Δɛ/2) is plotted versus log life to 

failure (2Nf) which results in strain-life curves for each material; this approach gives better 

results when compared to the original Modified Universal slopes method and real 

experimental fatigue data form literature, as observed in Figure 44 - Figure 47 the rest of 

graphs are shown in appendix A. 

 

 

Figure 44 Comparison between Four Prediction Approaches for SAE 4140, HB409 Steel 

Exp.,    Ea = 1 

M.Uiversal Slopes,  Ea = 0.63 

Proposed Method Ea = 0.87 
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Figure 45 Comparison between Four Prediction Approaches for SAE 1141, HB277 Steel 

 

 

Figure 46 Comparison between Four Prediction Approaches for SAE 1070, HB280 Steel 

Exp.,    Ea = 1 
M.Uiversal Slopes,  Ea = 0.59 
Proposed Method Ea = 0.79 

Exp.,    Ea = 1 
M.Uiversal Slopes,  Ea = 0.63 
Proposed Method Ea = 0.87 
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Figure 47 Comparison Between four Prediction Approaches for SAE H-11, HB660 Steel 

 

Figure 48 shows the predicted lives obtained using the proposed method and Universal 

slopes method compared with the experimental lives for a group of steels within a scatter 

band value of three, the same method was used in the literatures to validate the existing 

models. The nearest to the center line at value of 1, is the best prediction, all the evaluation 

measures to be here employed will be formulated to be unity for ideally good prediction. 

A group of steels were used in Figure 48 with different ultimate tensile strength values.  
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Figure 48 Comparison of the Predicted and Experimental Fatigue Lives for Different Alloys 

 

4.1.2.2 Quantitative Evaluation 

To evaluate the proposed estimation method on a quantitative basis, the most popular 

evaluation criteria proposed by Park and Song [33] were employed. This method is based 

on introducing three evaluation error criterion, Ef expressed in Eq. (136):  

 

 𝐸𝑓(𝑠) =

[
 
 
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑤𝑖𝑡ℎ𝑖𝑛 

1
𝑆 ≤ (

𝑁𝑝

𝑁𝑓
) ≤ 𝑆

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎
]
 
 
 

                 (136) 

 

 

Where the value of S =3 is employed for fatigue life prediction. 
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The second criteria used is the goodness-of-fit between the predicted and experimental 

values applying a least squares analysis. The goodness-of-fit-evaluation criteria is defined 

for both combined of all (ε-N) data sets and for individual (ε-N) data sets, separately as 

follow: 

 (𝐸𝑎)𝑡𝑜𝑡𝑎𝑙 =  
(1 − |𝛼𝑡𝑜𝑡𝑎𝑙|) + (1 − |1 − 𝛽𝑡𝑜𝑡𝑎𝑙|) + (1 − |1 − 𝛼𝑡𝑜𝑡𝑎𝑙 − 𝛽𝑡𝑜𝑡𝑎𝑙|) + (1 − |1 − 𝑟𝑡𝑜𝑡𝑎𝑙|)

4
 (137) 

 

 (𝐸𝑎)𝐷𝑒𝑠𝑡 =
1

𝑁
 ∑(𝐸𝑎)𝑖

𝑁

𝑖=1

=
1

𝑁
∑

(1 − |𝛼𝑖|) + (1 − |1 − 𝛽𝑖|) + (1 − |1 − 𝛼𝑖 − 𝛽𝑖|) + (1 − |1 − 𝑟𝑖|)

4

𝑁

𝑖=1

 (138) 

Where α and β are the values of the intercept and slope of a least-squares line,  

 

 Log(2𝑁𝑝) = 𝛼 + 𝛽 Log(2𝑁𝑓)                                                               (139) 

 

and r is the correlation coefficient between the predicted and experimental lives, the 

subscripts, total and i, refers to the combined data of all (ε-N) data sets and ith (ε-N) data 

sets, respectively. 

By assuming the above estimates are of equal importance, the final estimates is made by 

taking the average of the E values given by: 

 𝐸̅ =
𝐸𝑓(𝑆 = 3) + (𝐸𝑎)𝑡𝑜𝑡𝑎𝑙 + (𝐸𝑎)𝐷𝑒𝑠𝑡

3
                                                      (140) 

 

Table 7, shows the values obtained using the above estimation criteria, closer to one is 

the, better is the prediction model. 

 

Table 7 Strain-Life Quantitative Analysis 

 

E values Proposed method Modified universal slopes method 

𝑬𝒇(𝒔=𝟑) 0.96 0.85 

(𝑬𝒂)𝑫𝒆𝒔𝒕 0.82 0.73 

(𝑬𝒂)𝒕𝒐𝒕𝒂𝒍 0.75 0.72 

𝑬̅ 0.84 0.77 
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 The Notch Root Strain Prediction Model Technique 

The finite element software used in this study was ABAQUS. Due to symmetry one-fourth 

of the plate was modelled using 2D- solid plane stress elements with input thickness Figure 

49. The notched bar axisymmetric two dimensional model was used, Figure 51. To insure 

an optimum mesh size, the number of elements was increased until there was no significant 

change in strain at the notch root nodes see (Figure 50 and Figure 52). A far-field uniform 

tensile load was applied at the end of both notched plate and bar perpendicular to the notch 

surface. The elastic stress concentration factors, Kt, were obtained using FEA nonlinear 

analysis based on the net cross-sectional area. Elastic-plastic finite element analyses was 

conducted using the combined-hardening model. The combined hardening model is a 

combination of a non-linear kinematic and isotropic hardening model. This option is 

suitable for cyclic loading analysis taking into account the Bauschinger effect, the von 

Mises yield criterion with the associated flow rule in addition to kinematic hardening to 

compute the plastic strain increment. The input material cyclic properties for each material 

were taken from published experimental tests by AISI Bar Steel Fatigue Database and SAE 

J1099. Kt values are obtained by taking the ratio of stress amplitude at notch root to the 

nominal stress amplitude. Application of nominal stress amplitude smaller than 0.8Sy 

results in stress concentration factor of 2.73 and 1.78 for a notched plate and round bar 

respectively. Variable amplitude cyclic loadings used in this study to investigate the 

behavior of each material under tension-compression conditions: a maximum nominal 

stress of 350 MPa and minimum stress amplitude of -240 MPa was applied to a notched 

plate. In case of round bar the maximum and minimum nominal stress amplitudes were 

500 MPa and -240 MPa respectively. These values were selected to ensure that sufficient 

plastic strain was generated at the notch root. 
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Figure 49 One-Fourth of Flat Plate Finite Element Model. 

 

Figure 50 Mesh Configuration for the Area around Notched Plate. 
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Figure 51 Axisymmetric two Dimensional Model for Round Bar. 

 

 

Figure 52 Mesh Distribution around the Round Bar Notch 
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4.2.1 Methodology 

As mentioned earlier Neuber’s rule is the most commonly used analytical method for notch 

root stress and strain predictions. However, studies conducted reveal that Neuber’s rule 

overestimates these values compared to elasto-plastic finite element cyclic analysis. 

Neuber’s rule is based on nonlinear equations (40),(41), a study of these two equations 

reveals that there are two material cyclic properties that contribute to the difference 

between the elasto-plastic finite element results and Neuber’s predictions especially when 

the type of material is changed. It becomes to determine, which of these properties has the 

larger effect on this difference and how this difference changes by changing the type of 

material. So, does the change behaves in a linear, or nonlinear manner? 

Based on Eq. (41), if the geometry factor Kt and nominal stress S are fixed then this 

equation can be written as in Eq. (141): 

  

 ∆𝜎2 + 2∆𝜎𝐸 (
∆𝜎

2𝐾′
)

𝑚

= (𝐾𝑡∆𝑆)2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                    (141) 

 

 

Where   m=1/n΄ 

The two materials properties that change by changing the type of steel are K΄ and m  

Each type of steel has a unique value of K΄ and m. the Young’s modulus E stays almost 

constant for all steel types. Figure 53 shows the change of material stiffness with increasing 

the value of m, each curve expresses a cyclic stress-strain curve for a different steel, where 

m= 0, and m= ∞ define the perfectly plastic and perfectly elastic conditions respectively. 

The difference in result determined by using Neuber’s and elasto-plastic finite element 

analysis notch root strain prediction method should be controlled by selection of K΄ and m 

values. 
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Figure 53 Cyclic Stress-Strain Curves for Different Steels 

 

To know the effect of the two variables m & K΄ on the stress and strain estimates one of 

these variables has to be fixed while the other is varied. 

For most steels K΄ can have a value between 900 – 2000 (MPa). In order to investigate the 

effect of m on the estimation of local strain values, the value of K΄ was fixed at 1500 (MPa) 

which corresponds to an average value for most steels. The exponent m was incrementally 

changed from 11.1 - 4.3 which corresponds to n΄ value range of 0.09 - 0.23, this range 

covers a majority of steels used in the industry. E, Kt, and S have values of 200 (GPa), 2.73 

and 300 (MPa) respectively. 

δε was defined as the notch strain amplitude difference between Neuber’s  and FEA elasto-

plastic solutions and δε can be expressed as: 

 

 𝛿𝜀 = 𝜀𝑁 − 𝜀𝐹𝐸𝐴                                                    (142) 

 

Where, 𝜺𝑵 and 𝜺𝑭𝑬𝑨 are the Neuber’s and elasto-plastic FEA notch root strain amplitude 

results respectively. Based on Eq. (142) if 𝛿𝜀 can be predicted and the cyclic properties for 



www.manaraa.com

96 

 

the material are known, it is easy to find 𝜺𝑭𝑬𝑨 which corresponds to the optimum notch 

root strain amplitude value, thus elasto-plastic finite elements analysis can be avoided.  

This is desired due to the complexity of the plastic deformation behavior, and the difficulty 

of defining materials parameters in the FEA software. 

Eq. (142) can be written in the form: 

 

 𝜀𝑁 − 𝛿𝜀 = 𝜀𝐹𝐸𝐴                                                    (143) 

 

 

To predict  𝛿𝜀 an elasto-plastic finite element analysis was conducted for n΄ values that 

range between 0.09 - 0.23 with an incremental increase of 0.1, and fixed values of E, Kt, 

and S. 

This trial is conducted in order to know the effect of the n΄ values on the difference between 

Neuber’s and FEA elasto-plastic estimates, the proposed prediction model will be based 

on this behavior. 

To investigate the effect of increasing nominal applied stress, three different nominal stress 

amplitude levels were used, 250, 300, 350 (MPa) at the same n΄ range specified above. 

In the final step the effect of K΄ was investigated at three different values 900, 1400, 1500 

(MPa) with a value of m equal 6.02 which represent a mean value for most steels. 

Maximum nominal stress amplitude used is 350 MPa which corresponds to nearly 1000 

MPa notch stress, since most of the targeted steels have ultimate tensile strength below 

1000 MPa (Kt * Smax) =2.73 * 350 = 955 (MPa)). 

4.2.2 Developing a Prediction Method. 

The change of δε with reciprocal cyclic hardening exponent m is shown in Figure 54, the 

values of δε in y-axis are multiplied to 106 just to make them visible. It is clear that the 

relationship of the equation that describes the change in the prediction error δε, and m is a 

power relationship. Based on curve fitting, different power law equations were obtained. 

The curve that has the optimal power relation for different nominal stress values is 

presented in Eq. (144). The equation obtained from Figure 54, has the form: 
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 𝑦 = 𝐴(𝑚)𝛽                                                    (144) 

 

  Eq. (144) was applied on a range of steels, and a the correction error was calculated for 

each steel using elasto-plastic finite element analysis and calculated strains using Neuber’s 

rule, the prediction error data was used to optimize the values of A and β. The optimal 

value was 0.015 for A and -2.019 and β, as shown in Eq. (145). 

 

 𝛿𝜀 = 0.015(𝑚)−2.019 (145) 

 

Eq. (145) is a correction factor that depends on (m =1/ n΄), which can be subtracted from 

Neuber’s notch strain to get the optimum strain value that corresponds to the elasto-plastic 

finite element analysis given by Eq. (146). 

 

 𝜀𝑁 − 0.015(𝑚)−2.019 = 𝜀𝐹𝐸𝐴                       (146) 

 

 

Figure 54 Variation of δε with Different m Values 
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Figure 55 Variation of δ with K΄at Fixed Value of m & S 

 

The same elasto-plastic FEA analysis is conducted by fixing m and changing K′ with values 

specified earlier. Figure 55 shows the change of δε with K΄ for a fixed value of Sa = 300 

(MPa) and m = 6, in this case a linear trend is observed. Based on this behavior the value 

of K′ is not included in Eq. (146) at this point it is assumed that the effect of K′ is not 

significant and the proposed model is optimized to compensate for the effect of K΄.  

To increase the prediction capability of Eq. (146) the interpolation technique proposed by 

Calladine [73], was used Eq. (147); shown in Figure 56. Where; equation (12) in Figure 56 

represents the best linear interpolation equation, and the curved dashed line represents the 

experimental or exact curve. Fm relys on the maximum stress developed at each 

corresponding m value. This scheme is employed for strain rate-independent prediction, 

and described by Eq.(147). 

 𝜀 = 𝜀𝑁 + 𝑥(𝜀𝑒𝑙 − 𝜀𝑁) (147) 
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Figure 56 Interpolation Assumption by Calladine [73] 

Eq. (147) assumes that the variation of notch root strain and m is perfectly linear; however 

the relationship is not linear as shown in Figure 56. Combining Eq. (146) and Eq. (147) 

results in a model given by Eq. (148) which takes into account the nonlinear behavior. 

 
 

𝜀 = (𝜀𝑁 − 𝛿𝜀) + 𝑥[𝜀𝑒𝑙 − (𝜀𝑁 − 𝛿𝜀)]                   (148) 

 

 Eq. (148) can be rearranged to give: 

 

 𝜀 = (1 − 𝑥)(𝜀𝑁 − 𝛿𝜀) + 𝑥𝜀𝑒𝑙                                 (149) 

 

Studies show that the optimum value for 𝒙 is 0.35.The main advantage of Eq. (149) is that, 

the elasto-plastic finite element analysis can be avoided. Since linear finite element analysis 

using the proposed method provides closer results as elasto-plastic finite element analysis. 
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Local stress  𝜎 can be predicted using a direct linear interpolation between linear finite 

element and Neuber’s rule solution using Eq. (150) where the values of strains are replaced 

with stresses and the value of 𝑥  is replaced by 0.1 as:  

 

            𝜎 = 𝜎𝑁 + 𝑥(𝜎𝑒𝑙 − 𝜎𝑁) (150) 

   

Where, 𝜎𝑁 and 𝜎𝑒𝑙 are the local stress obtained using Neuber’s and the linear finite element 

analysis method respectively. 

4.2.3 Evaluation of the Proposed Method 

To validate the proposed model in Eq. (149) and (150) different steels were tested using 

two geometries, double notched flat plate and a circumference notched round bar. Elastic, 

elastic-plastic finite element and Neuber’s rule prediction were used at two loading 

conditions. The results were compared with the proposed notch root prediction method. 

Applied conditions for different steels: 

I. Completely reversed applied loads, 2 nominal stress amplitudes are applied, 250 

MPa, and 300 MPa on the following steels, 1020, 

1541,1551V,1022,1141AL,1141Nb,1141V,1045,5150,9310,41B17,C-70 and 9262 

II. Completely reversed load from zero to 0.8 cyclic yield strength (MPa) applied on 

the following steels, RQC-100, SAE1045, SAE1050, and SAE1141MA. 

III. Variable amplitude where, a time history segment is used for each geometry, as 

shown in Figure 57. To investigate the behavior of each material under variable 

tension-compression conditions: a maximum nominal stress of 350 MPa and 

minimum stress amplitude of -240 MPa was applied to a notched plate. In case of 

the round bar the maximum and minimum nominal stress amplitudes were 500 MPa 

and -240 MPa. These values were selected to insure that sufficient plastic strain 

was generated at notch root.  

The types of materials used in the evaluation are SAE1141V, RQC-100, SAE1038, 

SAE1050M, SAE1117, SAE15V24, SAE1141Nb, SAE1045, SAE1141, Al-2024-T350 

including low strength, medium strength steels. Elastic and elasto-plastic finite element 
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analysis were carried out for each type of steel, maximum stresses and strains are recorded 

for the nodes at the notch root location. 

 

 

Figure 57 Applied Nominal Stress for Different Geometries 
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 RESULTS AND DISCUSSIONS  

 Ultimate Tensile Strength HB Correlation Model 

Brinell hardness HB and ultimate tensile strength Su correlation model was created using 

data on 246 different steels to create a fatigue life prediction model.  The model was 

evaluated using qualitative as well as a quantitative criteria. Figure 42, Figure 43 show 

the prediction capability qualitatively, in Figure 42 the predicted ultimate tensile strength 

Su is plotted versus the actual values. The other qualitative analysis is done comparing the 

most utilized method in industry, Roessel Fatemi’s method, where the ratio of predicted 

and actual tensile strength is plotted versus the Brinell hardness HB. A count of the points 

falling in the scatter band of ±10% indicates that more points fall within the scatter band 

for the proposed model than for the Fatemi-Roessel model, as shown in Figure 43. 

The other criteria used to evaluate the proposed model are; error criterion, mean value 

and coefficient of variance, which is a quantitative statistical analysis described earlier, 

the average of the three 𝐸̅ values represent the goodness of the prediction model where 

the value of 1 represent the optimum value, the nearest to one is the best prediction, table 

8 shows the 𝐸̅ value for proposed method is 0.931 compared with the value of 0.852 for 

the Roessel-Fatemi’s model. 

 Strain-Life Prediction Proposed Method 

The data proposed in Table 8 provides the fatigue parameters obtained from the proposed 

and Modified Universal Slopes prediction methods for 52 different materials; these 

values were compared with the experimental data from the sources mentioned above. 

Reference to the experimental data for each steel, proposed method provides better 

estimation for more than 92% of the proposed steels for fatigue strength coefficient (𝜎𝑓
′ ) 

values, which represent the elastic coefficient in strain-life prediction model . The 

proposed method is not only based mainly on hardness of the material which is easy to 

obtain, but it also provides a better results compared with the modified universal slopes 

estimation method. 
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Table 8 Fatigue Parameters Obtained from the Proposed and Modified Universal Slopes Methods. 

SAE 

Specification 

Brinell 

Hardnes

s (HB) 

Tensile 

strength 

(MPa) 

Exp.  

f 

Exp. 

f′ (MPa) 

f′(p) 

(MPa) 

f′(M) 

(MPa) 

Exp.  

 f′ 
f′(p) f′(M) 

A538A(b) 405 1515 1.1 1655 1960 2116 0.3 0.27 0.25 
A538B(b) 460 1860 0.82 2135 2309 2510 0.8 0.22 0.22 
A538C(b) 480 2000 0.81 2240 2437 2654 0.6 0.21 0.21 
AM-350(c) 496 1905 0.23 2690 2554 2548 0.1 0.17 0.17 
RQC-100 290 940 0.56 1240 1401 1447 0.66 0.31 0.31 
1005-1009 125 470 1.09 515 807 813 0.3 0.5 0.51 

1045 410 1450 0.72 1860 2016 2067 0.6 0.25 0.25 
1541F 290 950 0.68 1275 1401 1460 0.68 0.32 0.32 
1541F 260 890 0.93 1275 1273 1383 0.93 0.35 0.35 
4130 258 895 1.12 1275 1280 1406 0.92 0.38 0.37 
4142 310 1060 0.35 1450 1485 1593 0.22 0.27 0.27 
4142 380 1415 0.66 1825 1850 2034 0.45 0.26 0.26 
4142 450 1760 0.54 2000 2281 2439 0.4 0.22 0.22 
4140 310 1075 0.69 1825 1485 1611 1.2 0.31 0.29 
4340 243 825 0.57 1200 1195 1287 0.45 0.33 0.33 
4340 409 1470 0.48 2000 2010 2091 0.48 0.24 0.24 
4340 350 1240 0.84 1655 1674 1807 0.73 0.28 0.28 
5160 430 1670 0.87 1930 2131 2314 0.4 0.24 0.24 
9262 410 1565 0.38 1855 2016 2202 0.38 0.23 0.23 
H-11 660 2585 0.4 3170 4180 3357 0.08 0.15 0.17 

950X(g) 156 530 1.24 1005 900 898 0.85 0.46 0.48 
1141 223 771 0.85 1168 1139 1238 0.257 0.4 0.38 
1141 241 802 0.77 1080 1209 1280 0.36 0.38 0.37 
1141 277 925 0.88 1127 1367 1453 0.31 0.37 0.36 
1141 252 797 0.88 1162 1251 1272 0.53 0.38 0.37 
1038 185 652 0.76 1004 1005 1079 0.2 0.43 0.41 
1038 195 649 1.1 1009 1040 1075 0.23 0.44 0.44 
1541 195 906 0.54 1044 1028 1403 0.51 0.38 0.32 

1050(M) 205 821 0.68 989 1069 1299 0.43 0.4 0.35 
1050(M) 220 829 0.42 1094 1116 1301 0.3 0.35 0.32 

1090 259 1090 0.15 1310 1267 1634 0.25 0.27 0.23 

SAE Iter. # 

Brinell 

Hardne

ss (HB) 

Tensile 

strength 

(MPa) 

Exp. 

f 

Exp. 

f′ (MPa) 

f′(p) 

(MPa) 

f′(M)  

(MPa) 

Exp. 

f′ 
f′(p) f′(M) 

1070 36 280 659 0.5 1289 1359 1079 0.361 0.32 0.37 

10B21 24 322 1105 1.22 1284 1557 1664 0.69 0.34 0.33 

1538 131 285 973 3.33 1355 1365 1474 0.8 0.29 0.27 

15B35 45 286 940 0.1 1127 1398 1463 0.96 0.25 0.25 

4130AL 29 442 1482 0.6 2294 2242 2128 1.44 0.24 0.25 

41B17 72 277 872 1.13 1023 1353 1368 1.48 0.37 0.37 

8620 119 326 991 0.76 1639 1576 1521 0.47 0.32 0.32 

9254V 34 536 2050 0.4 2914 2935 2771 4.17 0.19 0.2 

41B17M 79 627 1877 0.056 4712 3807 2572 0.34 0.12 0.15 

4320 49 188 994 0.99 909 1002 1512 0.86 0.43 0.33 

Man-Ten - 150 972 1.17 972 885 960 0.85 0.46 0.4  

AISI304 - 327 951 1.1 2275 1526 1430 0.89 0.3 0.28 

18Ni - 460 1862 0.82 2137 2310 2550 0.8 0.23 0.21 

AISI-310 - 145 641 0.73 1655 860 1056 0.6 0.44 0.38 

VAN-80 - 225 696 1.13 1055 1125 1132 0.21 0.38 0.39 
15B27 HT - 264 916 1.09 1062 1284 1430 1.68 0.36 0.34 

S.S 304 - 327 951 1.16 2047 1526 1439 0.554 0.29 0.19 
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Figure 58 represent a plot between the experimental/predicted fatigue strength (𝜎𝑓
′) ratios 

for the proposed and Modified Universal Slopes model. 

The scattering of the proposed method was around 1 which is slightly lower than the results 

obtained using the Modified Universal Slopes method this means that the proposed method 

provides better prediction of the fatigue strength coefficient parameter as compared to the 

original method (Modified Universal Slopes Method) 

Figure 59 shows the scattering of fatigue ductility coefficient (𝜀𝑓
′) which represent the 

second fatigue parameter or the plastic coefficient in the model, it is clear that the 

predictability of this parameter is relatively poor for both models with slightly less 

scattering for the proposed method. This conclusion agrees with the results in the 

literatures. The literature also mentioned that the correlation between the fatigue ductility 

coefficient (𝜀𝑓
′ ) and the monotonic tensile properties is poor for all currently existing 

prediction models 

 

 

Figure 58 Actual/ Predicted Fatigue Strength Ratio vs Actual Values 
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Figure 59 Comparison of Predicted Fatigue Ductility Coefficient with Experimental Data 

Figure 44 - Figure 47 show the strain –life curve for each prediction method for different 

steels, the proposed method curve appears to be closer to the experimental data curves, 

which means it gives better prediction values than the Modified Universal Slopes Method. 

The performance of proposed method tends to get closer to the experimental results at low 

cycle fatigue rather than a high cycle fatigue conditions, which is shown in Figure72 -

Figure 97, Appendix A. 

For high strength material SAE H-11, with Su=2585 (MPa), the proposed method shows 

comparable prediction results, as shown in Figure 47.  

Figure 48 shows a comparison between the experimental results and predicted lives 

obtained by the proposed method and Modified Universal slopes method within a scatter 

band of three, both methods give a good prediction capability by considering the number 

of points falling in the scatter band at relatively lower number of cycles below 

approximately 16000 cycles, at higher number of cycles above 20000 cycles the proposed 

method exhibit a lower scattering with a higher number of points falling within the range 
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of 3 scatter band. In design 20000 cycles is not a significant number, in most cases in design 

the objective is 10 times more than this number, this gives the proposed a significant 

advantage over the Modified Universal Slopes method.  

The quantitative analysis criteria used for strain-life prediction is more complex than the 

criteria used for ultimate tensile strength Brinell hardness prediction, as described earlier. 

Table 7 shows the comparison between the two methods, 20 different steels are employed, 

the 𝐸̅ values are 0.84 and 0.77 for proposed and Modified Universal Slopes method 

respectively, where closer to one is the best prediction.  
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 Notch Root Prediction Model  

Notch root strain amplitudes were calculated for each material under the specified loading 

condition with the aid of linear finite element analysis using Eq. (88), the results were 

compared with the elasto-plastic finite element analysis and Neuber’s prediction.  

 Case I where the applied nominal stresses are 250, 300 MPa: 

The results are shown in Table 9 for each material used within the test, the maximum strain 

values for proposed method has an advantage over the Neuber’s prediction when the two 

methods were compared with the elasto-plastic maximum strain and stress results. 

Table 9 Notch Root Stress-Strain for Flate Plate under Completely Reversed Cyclic Loading 

Notched flat plate under Sa=250 (MPa) 

SAE 

designation 

Neuber’s Linear FEA 
Elasto-plastic 

FEA 
Proposed Method 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

1020 373 0.61 671 0.30 426 0.43 404 0.46 

1541 455 0.52 672 0.34 571 0.38 542 0.42 

1151V 475 0.48 672 0.32 632 0.35 505 0.38 

1022 397 0.59 670 0.33 479 0.42 431 0.46 

1141AL 452 0.48 671 0.31 572 0.35 515 0.37 

1141Nb 437 0.49 671 0.3 530 0.35 502 0.38 

1038 396 0.59 672 0.33 469 0.42 440 0.48 

Notched flat plate under Sa=300 (MPa) 

SAE 

designation 

Neuber’s Linear FEA 
Elasto-plastic 

FEA 
Proposed Method 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

1020 403 0.8 805 0.4 467 0.6 420 0.57 

1038 430 0.78 805 0.4 514 0.56 482 0.53 

1541 493 0.7 805 0.41 635 0.49 592 0.51 

1141Nb 470 0.63 806 0.37 577 0.47 525 0.43 

1151V 515 0.64 805 0.39 637 0.46 597 0.46 

1141V 508 0.62 805 0.37 625 0.45 580 0.447 

1045 500 0.65 805 0.38 626 0.47 577 0.48 

1022 428 0.79 805 0.4 522 0.57 503 0.56 

1141AL 491 0.64 805 0.37 634 0.44 595 0.44 

5150 545 0.59 806 0.38 692 0.43 625 0.44 

9310 625 0.55 805 0.37 749 0.47 691 0.48 

41B17 617 0.52 805 0.38 703 0.43 682 0.45 

C-70 599 0.56 805 0.4 754 0.43 700 0.45 

9262 575 0.57 804 0.38 732 0.43 670 0.45 
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 Case II, completely reversed load from zero to 0.8 cyclic yield strength (MPa), the 

maximum stress-strain results were listed in Table 10 to Table 13, and the plot of 

nominal stress versus the local maximum principal strain obtained from each 

prediction method shown in Figure 60 to Figure 67. All figures show that the gap 

between the proposed method and elasto-plastic finite element is very small 

compared with Neuber’s - FEA gap. For SAE1045 the proposed method exhibits 

principal strains below the estimated values for the flat plate geometry compared 

with FEA results as shown in Figure 62. In general the proposed method provide a 

reasonable estimation especially in the case of round bar geometry. 

 

 Case III,  variable amplitude ,this is the extreme condition where the mean stress 

become a factor,  same analogues used by G. Glinka [44] where the notch strains 

plotted versus the number of reversals in order to show the difference between the 

prediction methods instead of using hysteresis loops. Figure 68 to Figure 71 show 

some snapshots obtained from ABAQUS viewer for strain amplitudes and the 

corresponding number of cycles to failure contours for each geometry, fe-safe [70] 

software was used to obtain the number of cycles to failure. 

Morrow’s mean stress method was used to predict the number of cycles to failure under 

each condition also shown in Table 15 to Table 23 appendix B. Figure 98 to Figure 133, 

appendix B show the maximum local strain at each reversal with the corresponding number 

of cycles to failure for each material, As shown in the Figures, the values of notch strains 

as well as the number of cycles obtained by the proposed method are closer to the elasto-

plastic finite element values especially under tensile nominal cyclic stress, under 

compression cycles all three methods are close. Notch strain amplitude values are generally 

lower in case of plane strain condition where the stress is in a multi-axial state. 

Some hysteresis loops obtained by elasto-plastic finite element analysis show the local 

strain amplitudes with the corresponding notch root stress, for each reversal shown in 

Figure 134 to Figure 136.
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Table 10 Results Obtained from RQC-100 under Completely Reversed Nominal Stress. 

Notch root stress-strain for RQC-100 Steel flat plate 

Sa 

(MPa) 

Neuber’s Linear FEA 
E- Plastic 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

0 0 0 0 0 0 0 0 0 

50 137 0.066 133 0.064 133 0.064 137 0.047 

100 273 0.133 267 0.128 269 0.128 272 0.113 

150 409 0.21 404 0.195 404 0.195 409 0.186 

200 496 0.29 538 0.259 538 0.259 500 0.261 

250 564 0.398 671 0.323 612 0.349 575 0.353 

300 613 0.52 809 0.39 638 0.456 633 0.456 

350 653 0.67 942 0.454 661 0.565 682 0.576 

400 685 0.836 1076 0.518 707 0.701 724 0.706 

450 713 0.102 1210 0.583 735 0.847 763 0.849 

500 737 1.21 1343 0.647 761 1.000 798 0.995 

 

Notch root stress-strain for RQC-100 Steel round bar 

Sa 

(MPa) 

Neuber’s Linear FEA 
E- Plastic 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

0 0 0 0 0 0 0 0 0 

50 90 0.0396 90 0.037 90 0.037 90 0.018 

100 179 0.0789 180 0.073 180 0.073 179 0.056 

150 268 0.118 271 0.110 271 0.110 268 0.095 

200 355 0.158 358 0.145 358 0.145 355 0.133 

250 438 0.201 444 0.180 444 0.180 439 0.173 

300 511 0.248 538 0.218 538 0.218 514 0.217 

350 572 0.302 625 0.254 624 0.253 577 0.265 

400 621 0.362 715 0.29 715 0.290 630 0.316 

450 663 0.43 805 0.327 785 0.329 677 0.373 

500 697 0.502 896 0.364 815 0.378 717 0.433 
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Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 

Notch root stress-strain for SAE1045 Steel flat plate 

Sa 

(MPa) 

Neuber’s Elastic FEA 
E- Plastic 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

0 0 0 0 0 0 0 0 0 

50 136 0.065 137 0.0637 133 0.063 136 0.06 

100 263 0.136 273 0.126 267 0.127 264 0.103 

150 354 0.226 410 0.193 404 0.193 360 0.185 

200 415 0.341 546 0.256 457 0.288 428 0.282 

250 461 0.4814 683 0.32 481 0.406 483 0.396 

300 498 0.644 819 0.386 507 0.530 530 0.524 

350 528 0.82 956 0.448 534 0.689 571 0.661 

400 555 1.02 1092 0.513 556 0.868 609 0.813 

 

Notch root stress-strain for SAE1045 Steel round bar 

Sa 

(MPa) 

Neuber’s Elastic FEA 
E- Plastic 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

0 0 0 0 0 0 0 0 0 

50 90 0.0393 90 0.0363 90 0.0363 90 0.037 

100 180 0.079 180 0.0727 180 0.0727 180 0.0458 

150 260 0.116 271 0.109 270 0.109 261 0.0825 

200 335 0.16 354 0.142 359 0.142 337 0.122 

250 395 0.209 444 0.179 444 0.179 400 0.167 

300 443 0.264 538 0.217 480 0.216 453 0.216 

350 481 0.323 625 0.252 521 0.258 495 0.267 

400 514 0.39 715 0.288 550 0.310 534 0.323 

450 543 0.465 805 0.324 575 0.371 569 0.384 
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Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 

 

Notch root stress-strain for SAE1050M Steel flat plate 

Sa 

(MPa) 

Neuber’s Elastic FEA 
E- Plastic 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

0 0 0 0 0 0 0 0 0 

50 137 0.0678 133 0.0459 133 0.046 137 0.0441 

100 271 0.135 267 0.132 267 0.132 271 0.117 

150 388 0.213 404 0.2 404 0.200 390 0.192 

200 465 0.316 538 0.265 530 0.275 472 0.282 

250 516 0.447 671 0.331 548 0.383 532 0.390 

300 553 0.599 805 0.397 571 0.506 578 0.512 

350 583 0.769 938 0.463 593 0.645 619 0.645 

400 606 0.956 1076 0.531 620 0.804 653 0.791 

450 629 1.18 1210 0.597 643 0.986 687 0.959 

 
Notch root stress-strain for SAE1050M Steel round bar 

Sa 

(MPa) 

Neuber’s Elastic FEA 
E- Plastic 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

0 0 0 0 0 0 0 0 0 

50 87 0.0431 90 0.0412 90 0.041 87 0.0264 

100 179 0.0892 180 0.0824 180 0.082 179 0.0708 

150 257 0.128 270 0.123 270 0.123 258 0.110 

200 340 0.176 359 0.164 359 0.164 342 0.155 

250 406 0.231 444 0.203 444 0.203 410 0.205 

300 455 0.298 538 0.245 485 0.245 463 0.263 

350 491 0.374 625 0.285 521 0.290 504 0.326 

400 520 0.46 715 0.326 555 0.349 540 0.397 

450 545 0.00561 805 0.00368 588 0.00416 571 0.477 

500 565 0.0066 896 0.00409 602 0.0049 598 0.556 
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Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 

Notch root stress-strain for SAE1141MA Steel flat plate 

Sa 

(MPa) 

Neuber’s Elastic FEA 
E- Plastic 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

0 0 0 0 0 0 0 0 0 

50 137 0.0685 137 0.0685 137 0.066 137 0.04 

100 273 0.137 273 0.137 273 0.133 273 0.09 

150 400 0.212 404 0.201 400 0.201 400 0.194 

200 485 0.3 538 0.268 485 0.268 490 0.274 

250 545 0.423 671 0.334 545 0.370 558 0.377 

300 585 0.561 805 0.401 585 0.490 607 0.491 

350 618 0.73 942 0.47 642 0.607 650 0.625 

400 645 0.92 1076 0.536 675 0.755 688 0.771 

450 667 1.12 1210 0.603 693 0.92 721 0.925 

500 687 1.3 1343 0.669 710 1.09 753 1.065 

 
Notch root stress-strain for SAE1141MA Steel round bar 

Sa 

(MPa) 

Neuber’s Elastic FEA 
E- Plastic 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) σmax %(ϵa) 

0 0 0 0 0 0 0 0 0 

50 90 0.045 90 0.0416 90 0.0416 90 0.0307 

100 179 0.0895 180 0.0833 180 0.0833 179 0.0742 

150 270 0.135 271 0.125 271 0.125 270 0.118 

200 354 0.18 358 0.165 358 0.165 354 0.161 

250 427 0.233 444 0.205 444 0.205 429 0.210 

300 483 0.299 538 0.248 500 0.248 489 0.268 

350 525 0.373 625 0.288 553 0.288 535 0.330 

400 557 0.458 715 0.33 590 0.329 573 0.400 

450 584 0.00553 805 0.00371 623 0.0038 606 0.476 

500 606 0.00662 896 0.00413 665 0.0044 635 0.561 
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Figure 60 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method 

 

Figure 61 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method 
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Figure 62 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method 

 

 

Figure 63 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method 
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Figure 64 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method 

 

Figure 65 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method 
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Figure 66 Local Strain Obtained from Elasto-plastic FEA, Neuber Rule and Proposed Method 

 

 

Figure 67 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed 
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Figure 68 Snapshot from ABAQUS Viewer for Strain Contours of Flat Plate under 

Tensile Cyclic Load.  

 

 

Figure 69 Snapshot using fe-safe/ABAQUS Viewer for Fatigue Life Contours of Flat 

Plate under Tensile Cyclic Load. 
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Figure 70 Snapshot from ABAQUS Viewer for Strain Contours of Round Bar under 

Tensile Cyclic Load. 

 

Figure 71 Snapshot using fe-safe/ABAQUS Viewer Fatigue Life Contours of Round Bar 

under Tensile Cyclic Load 
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 CONCLUSIONS 

Material data that ranged from low, medium and high strength alloy steels were used in 

this study, correlations among monotonic tensile data and fatigue properties were 

investigated, the predicted data was compared with the data predicted using commonly 

used methods and with experimental data. In the second part of this study, a notch root 

strain prediction model was developed by creating a notch strain correction expression 

based on the cyclic material property n′, subtracted from Neuber’s rule predicted strain. In 

the second stage a linear interpolation scheme was applied between the notch strain value 

obtained from the first stage and elastic finite element analysis notch root strain value. The 

effect of K′ on the notch strain is not included in the model it needs more investigation to 

combine the two effects (n′ and K′) into one mathematical model which is out of the scope 

of this work.  

Based on the discussions from the previous sections, the following can be concluded: 

1. A strong correlation is found between ultimate tensile strength and hardness, in the 

proposed method as in Eq. (124), a nonlinear relationship provides a better fit to 

the existing methods with R2=0.98. 

2. The results obtained by using correlation method proposed in Eq. (124), are closer 

to experimental data compared with Roessle-Fatemi’s ultimate tensile strength-

Brinell hardness correlation method. 

3. Ultimate tensile strength obtained from Eq. (124) is substituted with a 

corresponding Brinell-hardness HB in the Modified Universal Slopes method; that 

results in a new method Eq. (135), in which fatigue properties can be predicted 

using Brinell-hardness, true fracture ductility, and modulus of elasticity. 

4. Fatigue parameters obtained by the proposed method are closer to experimental 

data when they are compared with the results obtained from the Modified Universal 

Slopes model for most of the tested steels. 

1) A two-step new prediction method is developed based on the cyclic materials 

property n΄ and linear interpolation of Neuber’s rule and linear finite element 

analysis. 
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2) The proposed method notch strain values are in good agreement with the nonlinear 

finite element analysis compared with the use of Neuber’s method. 

3) Nonlinear finite element analysis can be replaced by linear finite element analysis. 

4) Prediction capability is slightly better in case of plane strain condition 
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 APPENDIX A 

Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi Su – HB 

Correlation Models Compared with Experimental Data. 

Number AISI 

Treatment 

temperature 

C0 

HB Su (Exp.) Su (Prop.) Su (Prop.)/Su (Exp.) 
Su 

(R-F) 

Su (R-

F)/Su(Exp.) 

1 1015 ….. 126 420 468 1.11 435 1.04 

2 1015 925 121 424 458 1.08 417 0.98 

3 1015 870 111 386 438 1.14 381 0.99 

4 1020 …. 143 448 503 1.12 496 1.11 

5 1020 870 131 441 478 1.08 453 1.03 

6 1020 870 111 394 438 1.11 381 0.97 

7 1022 925 143 482 503 1.04 496 1.03 

8 1022 870 137 429 490 1.14 475 1.11 

9 1030 … 179 551 584 1.06 629 1.14 

10 1030 845 126 463 468 1.01 435 0.94 

11 1040 … 201 620 639 1.03 712 1.15 

12 1040 900 170 589 563 0.96 596 1.01 

13 1040 790 149 518 516 1.00 518 1.00 

14 1050 …. 229 723 714 0.99 819 1.13 

15 1050 900 217 748 681 0.91 773 1.03 

16 1050 790 187 636 604 0.95 659 1.04 

17 1060 …. 241 813 749 0.92 865 1.06 

18 1060 790 179 625 584 0.93 629 1.01 

19 1080 … 293 965 914 0.95 1070 1.11 

20 1080 900 293 1010 914 0.91 1070 1.06 

21 1080 790 174 615 572 0.93 611 0.99 

22 1095 900 293 1013 914 0.90 1070 1.06 

23 1095 790 192 656 616 0.94 678 1.03 

24 1117 900 137 467 490 1.05 475 1.02 

25 1117 855 121 429 458 1.07 417 0.97 

26 1118 … 149 521 516 0.99 518 0.99 

27 1118 790 131 450 478 1.06 453 1.01 

28 1137 … 192 627 616 0.98 678 1.08 

29 1137 790 174 584 572 0.98 611 1.05 

30 1141 … 192 675 616 0.91 678 1.00 

31 1141 900 201 706 639 0.90 712 1.01 

32 1141 815 163 598 547 0.91 570 0.95 

33 1144 … 212 703 668 0.95 754 1.07 

34 1144 900 197 667 629 0.94 697 1.04 

35 1144 790 167 584 556 0.95 585 1.00 

36 1340 800 207 703 654 0.93 735 1.04 
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Number AISI 

Treatment 

temperature 

C0 

HB Su (Exp.) Su (Prop.) 
Su (Prop.)/Su 

(Exp.) 

Su 

(R-F) 

Su (R-F)/Su 

(Exp.) 

37 3140 870 262 891 812 0.91 947 1.06 

38 3140 815 197 689 629 0.91 697 1.01 

39 4130 870 197 668 629 0.94 697 1.04 

40 4130 865 156 560 531 0.95 544 0.97 

41 4140 870 302 1020 946 0.93 1106 1.08 

42 4140 815 197 655 629 0.96 697 1.06 

43 4150 815 197 729 629 0.86 697 0.96 

44 4320 895 235 792 731 0.92 842 1.06 

45 4320 850 163 579 547 0.94 570 0.98 

46 4340 870 363 1279 1187 0.93 1356 1.06 

47 4340 810 217 744 681 0.92 773 1.04 

48 4620 900 174 574 572 1.00 611 1.06 

49 4620 855 149 512 516 1.01 518 1.01 

50 4820 860 229 750 714 0.95 819 1.09 

51 5140 870 229 792 714 0.90 819 1.03 

52 5140 830 167 572 556 0.97 585 1.02 

53 5150 870 255 870 790 0.91 920 1.06 

54 5150 825 197 675 629 0.93 697 1.03 

55 5160 855 269 957 834 0.87 975 1.02 

56 5160 815 197 722 629 0.87 697 0.96 

57 6150 870 269 939 834 0.89 975 1.04 

58 6150 815 197 667 629 0.94 697 1.04 

59 8620 915 183 632 594 0.94 644 1.02 

60 8620 870 149 536 516 0.96 518 0.97 

61 8630 870 187 650 604 0.93 659 1.01 

62 8630 845 156 564 531 0.94 544 0.96 

63 8650 870 302 1023 946 0.92 1106 1.08 

64 8650 795 212 715 668 0.93 754 1.05 

65 8740 870 269 929 834 0.90 975 1.05 

66 8740 815 201 695 639 0.92 712 1.02 

67 9255 900 269 932 834 0.90 975 1.05 

68 9255 845 229 774 714 0.92 819 1.06 

69 9310 890 269 906 834 0.92 975 1.08 

70 9310 845 241 820 749 0.91 865 1.05 

71 1030b 540 255 669 790 1.18 920 1.37 

72 1030b 650 207 586 654 1.12 735 1.25 

73 1040b 425 352 841 1140 1.36 1310 1.56 

74 1040b 540 269 779 834 1.07 975 1.25 
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Number AISI 

Treatment 

temperature 

C0 

HB Su (Exp.) 
Su 

(Prop.) 

Su (Prop.)/Su 

(Exp.) 

Su 

(R-F) 

Su (R-F)/Su 

(Exp.) 

75 1040b 650 201 669 639 0.95 712 1.06 

76 1040 205 262 779 812 1.04 947 1.22 

77 1040 315 255 779 790 1.01 920 1.18 

78 1040 425 241 758 749 0.99 865 1.14 

79 1040 540 212 717 668 0.93 754 1.05 

80 1040 650 192 634 616 0.97 678 1.07 

81 1050b 540 293 862 914 1.06 1070 1.24 

82 1050b 650 235 717 731 1.02 842 1.17 

83 1050 315 321 979 1016 1.04 1183 1.21 

84 1050 425 277 938 860 0.92 1006 1.07 

85 1050 540 262 876 812 0.93 947 1.08 

86 1050 650 223 738 697 0.95 796 1.08 

87 1060 205 321 1103 1016 0.92 1183 1.07 

88 1060 315 321 1103 1016 0.92 1183 1.07 

89 1060 425 311 1076 979 0.91 1142 1.06 

90 1060 540 277 965 860 0.89 1006 1.04 

91 1060 650 229 800 714 0.89 819 1.02 

92 1080 205 388 1310 1300 0.99 1461 1.12 

93 1080 315 388 1303 1300 1.00 1461 1.12 

94 1080 425 375 1289 1240 0.96 1406 1.09 

95 1080 540 321 1131 1016 0.90 1183 1.05 

96 1080 650 255 889 790 0.89 920 1.03 

97 1095b 425 388 1372 1300 0.95 1461 1.06 

98 1095b 650 235 841 731 0.87 842 1.00 

99 1095 205 401 1289 1363 1.06 1516 1.18 

100 1095 315 375 1262 1240 0.98 1406 1.11 

101 1095 425 363 1213 1187 0.98 1356 1.12 

102 1095 540 321 1089 1016 0.93 1183 1.09 

103 1095 650 269 896 834 0.93 975 1.09 

104 1137 205 352 1082 1140 1.05 1310 1.21 

105 1137 315 285 986 887 0.90 1038 1.05 

106 1137 425 262 876 812 0.93 947 1.08 

107 1137 540 229 758 714 0.94 819 1.08 

108 1137 650 197 655 629 0.96 697 1.06 

109 1137b 205 415 1496 1433 0.96 1576 1.05 

110 1137b 315 375 1372 1240 0.90 1406 1.02 

111 1137b 425 311 1103 979 0.89 1142 1.04 
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Number AISI 

Treatment 

temperature 

C0 

HB Su (Exp.) Su (Prop.) Su (Prop.)/Su (Exp.) 
Su 

(R-F) 

Su (R-F)/Su 

(Exp.) 

112 1137b 540 262 827 812 0.98 947 1.15 

113 1137b 650 187 648 604 0.93 659 1.02 

114 1141 205 461 1634 1689 1.03 1776 1.09 

115 1141 315 415 1462 1433 0.98 1576 1.08 

116 1141 425 331 1165 1055 0.91 1224 1.05 

117 1141 540 262 896 812 0.91 947 1.06 

118 1141 650 217 710 681 0.96 773 1.09 

119 1144 205 277 876 860 0.98 1006 1.15 

120 1144 315 262 869 812 0.93 947 1.09 

121 1144 425 248 848 769 0.91 892 1.05 

122 1144 540 235 807 731 0.91 842 1.04 

123 1144 650 217 724 681 0.94 773 1.07 

124 1330b 205 459 1600 1677 1.05 1768 1.10 

125 1330b 315 402 1427 1368 0.96 1521 1.07 

126 1330b 425 335 1158 1070 0.92 1240 1.07 

127 1330b 540 263 876 815 0.93 951 1.09 

128 1330b 650 216 731 678 0.93 769 1.05 

129 1340 205 505 1806 1972 1.09 1973 1.09 

130 1340 315 453 1586 1642 1.04 1741 1.10 

131 1340 425 375 1262 1240 0.98 1406 1.11 

132 1340 540 295 965 921 0.95 1078 1.12 

133 1340 650 252 800 781 0.98 908 1.13 

134 4037 205 310 1027 975 0.95 1138 1.11 

135 4037 315 295 951 921 0.97 1078 1.13 

136 4037 425 270 876 838 0.96 978 1.12 

137 4037 540 247 793 766 0.97 888 1.12 

138 4037 650 220 696 689 0.99 784 1.13 

139 4042 205 516 1800 2050 1.14 2022 1.12 

140 4042 315 455 1613 1654 1.03 1750 1.08 

141 4042 425 380 1289 1263 0.98 1427 1.11 

142 4042 540 300 986 939 0.95 1098 1.11 

143 4042 650 238 793 740 0.93 853 1.08 

144 4130b 205 467 1627 1725 1.06 1803 1.11 

145 4130b 315 435 1496 1540 1.03 1663 1.11 

146 4130b 425 380 1282 1263 0.99 1427 1.11 

147 4130b 540 315 1034 993 0.96 1159 1.12 

148 4130 650 245 814 760 0.93 881 1.08 
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Number AISI 

Treatment 

temperature 

C0 

HB Su (Exp.) Su (Prop.) 
Su 

(Prop.)/S(Exp.) 

Su 

(R-F) 

Su (R-F)/Su 

Exp.) 

149 4140 205 510 1772 2007 1.13 1995 1.13 

150 4140 315 445 1551 1596 1.03 1706 1.10 

151 4140 425 370 1248 1218 0.98 1385 1.11 

152 4140 540 285 951 887 0.93 1038 1.09 

153 4140 650 230 758 717 0.95 822 1.09 

154 4150 205 530 1931 2152 1.11 2086 1.08 

155 4150 315 495 1765 1904 1.08 1928 1.09 

156 4150 425 440 1517 1568 1.03 1684 1.11 

157 4150 540 370 1207 1218 1.01 1385 1.15 

158 4150 650 290 958 904 0.94 1058 1.10 

159 4340 205 520 1875 2079 1.11 2040 1.09 

160 4340 315 486 1724 1845 1.07 1887 1.09 

161 4340 425 430 1469 1513 1.03 1641 1.12 

162 4340 540 360 1172 1174 1.00 1344 1.15 

163 4340 650 280 965 870 0.90 1018 1.06 

164 5046 205 482 1744 1819 1.04 1869 1.07 

165 5046 315 401 1413 1363 0.96 1516 1.07 

166 5046 425 336 1138 1074 0.94 1244 1.09 

167 5046 540 282 938 877 0.93 1026 1.09 

168 5046 650 235 786 731 0.93 842 1.07 

169 50B46 315 505 1779 1972 1.11 1973 1.11 

170 50B46 425 405 1393 1383 0.99 1533 1.10 

171 50B46 540 322 1082 1020 0.94 1187 1.10 

172 50B46 650 273 883 847 0.96 990 1.12 

173 50B60 315 525 1882 2115 1.12 2063 1.10 

174 50B60 425 435 1510 1540 1.02 1663 1.10 

175 50B60 540 350 1124 1131 1.01 1302 1.16 

176 50B60 650 290 896 904 1.01 1058 1.18 

177 5130 205 475 1613 1775 1.10 1838 1.14 

178 5130 315 440 1496 1568 1.05 1684 1.13 

179 5130 425 379 1275 1258 0.99 1423 1.12 

180 5130 540 305 1034 957 0.93 1118 1.08 

181 5130 650 245 793 760 0.96 881 1.11 

182 5140 205 490 1793 1871 1.04 1905 1.06 

183 5140 315 450 1579 1624 1.03 1728 1.09 

184 5140 425 365 1310 1196 0.91 1364 1.04 

185 5140 540 280 1000 870 0.87 1018 1.02 
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Number AISI 

Treatment 

temperature 

C0 

HB Su (Exp.) 
Su 

(Prop.) 

Su (Prop.)/Su 

(Exp.) 

Su 

(R-F) 

Su (R-F)/Su 

(Exp.) 

186 5140 650 235 758 731 0.96 842 1.11 

187 5150 205 525 1944 2115 1.09 2063 1.06 

188 5150 315 475 1737 1775 1.02 1838 1.06 

189 5150 425 410 1448 1408 0.97 1555 1.07 

190 5150 540 340 1124 1090 0.97 1261 1.12 

191 5150 650 270 807 838 1.04 978 1.21 

192 5160 315 555 1999 2348 1.17 2201 1.10 

193 5160 425 461 1606 1689 1.05 1776 1.11 

194 5160 540 341 1165 1094 0.94 1265 1.09 

195 5160 650 269 896 834 0.93 975 1.09 

196 51B60 425 460 1634 1683 1.03 1772 1.08 

197 51B60 540 355 1207 1152 0.95 1323 1.10 

198 51B60 650 290 965 904 0.94 1058 1.10 

199 6150 205 538 1931 2213 1.15 2123 1.10 

200 6150 315 483 1724 1826 1.06 1874 1.09 

201 6150 425 420 1434 1459 1.02 1598 1.11 

202 6150 540 345 1158 1111 0.96 1281 1.11 

203 6150 650 282 945 877 0.93 1026 1.09 

204 81B45 205 550 2034 2307 1.13 2178 1.07 

205 81B45 315 475 1765 1775 1.01 1838 1.04 

206 81B45 425 405 1407 1383 0.98 1533 1.09 

207 81B45 540 338 1103 1082 0.98 1252 1.14 

208 81B45 650 280 896 870 0.97 1018 1.14 

209 8630 205 465 1641 1713 1.04 1794 1.09 

210 8630 315 430 1482 1513 1.02 1641 1.11 

211 8630 425 375 1276 1240 0.97 1406 1.10 

212 8630 540 310 1034 975 0.94 1138 1.10 

213 8630 650 240 772 746 0.97 861 1.12 

214 8640 205 505 1862 1972 1.06 1973 1.06 

215 8640 315 460 1655 1683 1.02 1772 1.07 

216 8640 425 400 1379 1358 0.98 1512 1.10 

217 8640 540 340 1103 1090 0.99 1261 1.14 

218 8640 650 280 896 870 0.97 1018 1.14 

219 86B45 205 525 1979 2115 1.07 2063 1.04 

220 86B45 315 475 1696 1775 1.05 1838 1.08 

221 86B45 425 395 1379 1334 0.97 1491 1.08 

222 86B45 540 335 1103 1070 0.97 1240 1.12 
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Number AISI 

Treatment 

temperature 

C0 

HB Su (Exp.) 
Su 

(Prop.) 

Su (Prop.)/Su 

(Exp.) 

Su 

(R-F) 
Su (R-F)/Su (Exp.) 

223 86B45 650 280 903 870 0.96 1018 1.13 

224 8650 205 525 1937 2115 1.09 2063 1.07 

225 8650 315 490 1724 1871 1.09 1905 1.11 

226 8650 425 420 1448 1459 1.01 1598 1.10 

227 8650 540 340 1172 1090 0.93 1261 1.08 

228 8650 650 280 965 870 0.90 1018 1.06 

229 8660 425 460 1634 1683 1.03 1772 1.08 

230 8660 540 370 1310 1218 0.93 1385 1.06 

231 8660 650 315 1068 993 0.93 1159 1.08 

232 8740 315 495 1717 1904 1.11 1928 1.12 

233 8740 425 415 1434 1433 1.00 1576 1.10 

234 8740 540 363 1207 1187 0.98 1356 1.12 

235 8740 650 302 986 946 0.96 1106 1.12 

236 9255 425 477 1606 1788 1.11 1847 1.15 

237 9255 540 352 1255 1140 0.91 1310 1.04 

238 9255 650 285 993 887 0.89 1038 1.05 

239 9260 425 470 1758 1744 0.99 1816 1.03 

240 9260 540 390 1324 1310 0.99 1470 1.11 

241 9260 650 295 979 921 0.94 1078 1.10 

242 94B30 205 475 1724 1775 1.03 1838 1.07 

243 94B30 315 445 1600 1596 1.00 1706 1.07 

244 94B30 425 382 1344 1272 0.95 1436 1.07 

245 94B30 540 307 1000 964 0.96 1126 1.13 

246 94B30 650 250 827 775 0.94 900 1.09 
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Figure72 Comparison between Three Prediction Approaches for SAE 15B35, HB286  Steel 

 

 

Figure 73 Comparison between Three Prediction Approaches for SAE 1141, HB223 Steel 
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Figure 74 Comparison between Three Prediction Approaches for SAE 8620,HB326 Steel 

 

Figure75 Comparison between Three Prediction Approaches for SAE A538C,HB480 Steel 
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Figure 76 Comparison between Three Prediction Approaches for SAE1015,HB130 Steel 

 

Figure77, Comparison between Three Prediction Approaches for SAE41B17, HB277 Steel 
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Figure 78 Comparison between Three Prediction Approaches for SAE 1090, HB309 Steel 

 

Figure79 Comparison between Three Prediction Approaches for SAE1050M,HB220 Steel 
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Figure 80 Comparison between Three Prediction Approaches for SAE 1541,HB195 Steel 

 

Figure 81 Comparison between Three Prediction Approaches for SAE4340,HB350 Steel 
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Figure 82 Comparison between Three Prediction Approaches for SAE1090,HB259 Steel 

 

Figure 83 Comparison between Three Prediction Approaches for SAE1117,HB193 Steel 
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Figure 84 Comparison between Three Prediction Approaches for SAE1141V,HB217 Steel 

 

 

Figure 85 Comparison between Three Prediction Approaches for SAE1151V,HB251 Steel 
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Figure 86 Comparison between Three Prediction Approaches for SAE1541,HB180 Steel 

 

 

Figure 87 Comparison between Three Prediction Approaches for SAE1541,HB250 Steel 
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Figure 88 Comparison between Three Prediction Approaches for SAE4620,HB289 Steel 

 

Figure 89 Comparison between Three Prediction Approaches for SAE1045,HB222 Steel 
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Figure 90 Comparison between Three Prediction Approaches for SAE5150,HB245 Steel 

 

 

Figure 91 Comparison between Three Prediction Approaches for SAE8620,HB430 Steel 
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Figure 92 Comparison between Three Prediction Approaches for AISI-310,HB145 Steel 

 

Figure 93 Comparison between Three Prediction Approaches for AISI-Ni8,HB170 Steel 
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Figure 94 Comparison between Three Prediction Approaches for AISI304,HB327 Steel 

 

Figure 95 Comparison between Three Prediction Approaches for Man-Ten,HB150 Steel 
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Figure 96 Comparison between Three Prediction Approaches for VAN-80,HB225 Steel 

 

Figure 97 Comparison between Three Prediction Approaches for AM-350,HB325 Steel 
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 APPENDIX B 

Table 15 Results Obtained from SAE1141V under Variable Amplitudes 

Notch root stress-strain for SAE1141V  Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 562 0.74 567 0.607 597 0.612 

2 100 -78 0.41 -108 0.303 -44 0.29 

3 280 405 0.637 442 0.522 440 0.515 

4 -240 -485 -0.38 -528 -0.313 -501 -0.349 

5 291 515 0.574 551 0.468 542 0.486 

6 40 -127 0.242 -136 0.163 -104 0.157 

7 163 208 0.395 222 0.312 231 0.312 

8 -220 -468 -0.326 -521 -0.273 -480 -0.329 

9 350 564 0.737 571 0.6 599 0.608 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 39 0.56 20 0.46 40 0.48 3890 6600 5850 

2 164 0.113 167 0.11 167 0.112 ∞ ∞ ∞ 

3 -131 0.539 15 0.37 -132 0.46 4300 12500 7000 

4 41 0.153 43 0.0745 42 0.0775 600000 ∞ ∞ 

Notch root stress-strain for SAE1141V  Steel round bar 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 600 0.555 650 0.439 630 0.451 

2 100 -83 0.244 -58 0.14 -57 0.151 

3 280 239 0.378 281 0.273 265 0.281 

4 -280 -465 -0.205 -524 -0.162 -469 -0.231 

5 320 453 0.316 470 0.289 465 0.253 

6 40 -42 0.106 -83 0.077 -31 0.063 

7 140 137 0.18 158 0.152 148 0.123 

8 -240 -425 -0.158 -450 -0.133 -426 -0.191 

9 500 611 0.543 655 0.436 640 0.442 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 68 0.38 42 0.3 69 0.341 10000 21000 16000 

2 78 0.067 112 .066 80 0.065 ∞ ∞ ∞ 

3 14 0.237 -38 0.211 14 0.222 55000 100000 80000 

4 48 0.074 38 0.0375 49 0.03 ∞ ∞ ∞ 
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Table 16 Results Obtained from RQC-100 under Variable Amplitudes 

Notch root stress-strain for RQC-100  Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 650 0.66 660 0.580 676 0.569 

2 100 -19 0.331 -24 0.264 10 0.242 

3 280 468 0.566 470 0.497 494 0.476 

4 -240 -562 -0.352 -617 -0.311 -596 -0.317 

5 291 593 0.508 628 0.457 612 0.443 

6 40 -78 0.178 -38 0.134 -59 0.116 

7 163 254 0.338 273 0.292 272 0.275 

8 -220 -541 -0.305 -580 -0.277 -546 -0.426 

9 350 652 0.652 657 0.580 677 0.564 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 

% 

(ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 44 0.50 22 0.445 40 0.443 2450 4200 4300 

2 244 0.12 217 0.116 242 0.117 ∞ ∞ ∞ 

3 26 0.49 10 0.367 33 0.41 2800 10100 6000 

4 84 0.08 126 0.079 107 0.079 ∞ ∞ ∞ 

Notch root stress-strain for RQC-100  Steel round bar 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 698 0.504 710 0.416 709 0.435 

2 100 -13 0.187 178 0.098 6 0.127 

3 280 308 0.328 340 0.240 327 0.264 

4 -280 -527 -0.196 -605 -0.205 -524 -0.218 

5 320 493 0.3 435 0.274 501 0.257 

6 40 -7 0.079 -33 0.050 1 0.042 

7 140 173 0.158 178 0.129 181 0.118 

8 -240 -474 -0.157 -536 -0.174 -470 -0.183 

9 500 711 0.493 707 0.416 721 0.428 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 86 0.35 53 0.283 90 0.315 9500 34000 20000 

2 161 0.071 81 0.07 165 .0685 ∞ ∞ ∞ 

3 10 0.3 -51 0.224 16 0.26 30000 250000 130000 

4 83 0.04 73 0.039 91 0.038 ∞ ∞ ∞ 
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Table 17 Results Obtained from SAE1038 under Variable Amplitudes 

Notch root stress-strain for SAE1038  Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 530 0.788 532 0.665 565 0.637 

2 100 -105 0.45 -149 0.353 -68 0.310 

3 280 377 0.68 392 0.573 414 0.536 

4 -240 -465 -0.402 -514 -0.328 -483 -0.424 

5 291 490 0.598 529 0.503 519 0.489 

6 40 -145 0.259 -169 0.195 -120 0.161 

7 163 190 0.413 214 0.345 215 0.313 

8 -220 -450 -0.352 -506 -0.286 -464 -0.349 

9 350 532 0.748 544 0.651 568 0.611 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 33 0.595 9 0.496 40 0.53 6900 12000 9400 

2 136 0.114 122 0.11 160 0.113 ∞ ∞ ∞ 

3 20 0.475 12 0.394 25 0.419 13100 23400 20000 

4 23 0.077 23 0.075 45 0.076 ∞ ∞ ∞ 

Notch root stress-strain for SAE1038  Steel round bar 

Reversal Sa (MPa) 
Neuber’s 

Nonlinear 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 582 0.575 600 0.456 609 0.493 

2 100 -106 0.263 -76 0.153 -77 0.184 

3 280 216 0.398 275 0.288 244 0.319 

4 -280 -465 -0.203 -500 -0.159 -469 -0.219 

5 320 450 0.327 465 0.296 463 0.284 

6 40 -50 0.117 -54 0.083 -38 0.073 

7 140 129 0.245 158 0.158 141 0.183 

8 -240 -428 -0.151 -545 -0.130 -428 -0.175 

9 500 593 0.567 602 0.448 618 0.488 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 59 0.389 35 0.307 60 0.35 19000 45000 28000 

2 55 0.0675 100 0.068 56 0.067 ∞ ∞ ∞ 

3 11 0.239 -40 0.213 12 0.225 120000 200000 155000 

4 40 0.064 52 0.038 41 0.0545 ∞ ∞ ∞ 
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Table 18 Results Obtained from SAE1050M under Variable Amplitudes 

Notch root stress-strain for SAE1050M  Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 583 0.776 591 0.639 610 0.648 

2 100 -87 0.431 -84 0.308 -51 0.308 

3 280 404 0.674 440 0.546 439 0.55 

4 -240 -517 -0.324 -564 -0.332 -530 -0.340 

5 291 540 0.656 581 0.490 564 0.544 

6 40 -130 0.31 -108 0.158 -106 0.202 

7 163 205 0.475 253 0.320 228 0.366 

8 -220 -500 -0.265 -556 -0.290 -509 -0.292 

9 350 584 0.825 601 0.626 615 0.68 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 33 0.55 14 0.48 34 0.49 5500 9000 8100 

2 159 0.121 178 0.119 162 0.121 ∞ ∞ ∞ 

3 20 0.46 13 0.39 20 0.41 10500 20000 16000 

4 38 0.0825 73 0.081 39 0.082 ∞ ∞ ∞ 

Notch root stress-strain for SAE1050M  Steel round bar 

Reversal Sa (MPa) 
Neuber’s 

Nonlinear 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 640 0.565 660 0.420 565 0.483 

2 100 -70 0.239 -15 0.112 -45 0.167 

3 280 252 0.384 324 0.253 277 0.308 

4 -280 -515 -0.195 -547 -0.17 -514 -0.214 

5 320 480 0.329 490 0.279 490 0.283 

6 40 -20 0.103 -88 0.068 51 0.062 

7 140 159 0.184 160 0.143 168 0.141 

8 -240 -470 -0.152 -500 -0.141 -466 -0.177 

9 500 655 0.554 665 0.414 678 0.476 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 63 0.38 47 0.295 64 0.34 16300 40000 25000 

2 91 0.0725 155 0.0705 93 0.0705 ∞ ∞ ∞ 

3 5 0.24 -45 0.21 6 0.23 160000 450000 200000 

4 70 0.0405 36 0.0375 71 0.0395 ∞ ∞ ∞ 
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Table 19 Results Obtained from SAE1117 under Variable Amplitudes 

Notch root stress-strain for SAE1117  Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 573 0.79 578 0.648 599 0.649 

2 100 -75 0.435 -98 0.317 -41 0.302 

3 280 410 0.681 421 0.555 444 0.546 

4 -240 -496 -0.41 -536 -0.341 -511 -404 

5 291 525 0.59 560 0.496 551 0.492 

6 40 -130 0.229 -127 0.163 -106 0.141 

7 163 205 0.395 223 0.325 228 0.306 

8 -220 -480 -0.37 -525 -0.302 -491 -0.369 

9 350 573 0.76 581 0.638 596 0.629 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 

% 

(ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 39 0.6 21 0.49 42 0.526 4800 11000 8500 

2 168 0.123 162 0.119 200 0.122 ∞ ∞ ∞ 

3 23 0.48 17 0.39 30 0.43 11700 25000 18000 

4 38 0.083 48 0.081 61 0.0825 ∞ ∞ ∞ 

Notch root stress-strain for SAE1117  Steel round bar 

Reversal Sa (MPa) 
Neuber’s 

Nonlinear 

FEA 
Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 627 0.57 660 0.427 654 0.477 

2 100 -73 0.24 -65 0.128 -48 0.158 

3 280 247 0.385 317 0.261 272 0.299 

4 -280 -488 -0.21 -500 -0.167 -489 -0.234 

5 320 472 0.336 474 0.281 482 0.278 

6 40 -28 0.108 -79 0.074 44 0.056 

7 140 151 0.189 100 0.145 161 0.135 

8 -240 -442 -0.161 -463 -0.139 -441 -0.192 

9 500 634 0.57 665 0.422 660 0.477 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 70 0.39 80 0.297 83 0.355 22000 50000 37000 

2 87 0.0725 126 0.0665 112 0.0705 ∞ ∞ ∞ 

3 15 0.248 6 0.21 21 0.235 180000 500000 400000 

4 62 0.0405 33 0.0355 59 0.0395 ∞ ∞ ∞ 
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Table 20 Results Obtained from SAE15V24 under Variable Amplitudes 

Notch root stress-strain for SAE15V24 Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 663 0.666 671 0.56 685 0.573 

2 100 -14 0.344 -60 0.235 14 0.244 

3 280 476 0.571 490 0.467 503 0.480 

4 -240 -572 -0.334 -585 -0.298 -579 -0.343 

5 291 606 0.52 625 0.477 624 0.452 

6 40 -74 0.18 -135 0.122 -56 0.117 

7 163 261 0.341 293 0.28 279 0.277 

8 -220 -550 -0.295 -565 -0.259 -554 -0.310 

9 350 667 0.665 686 0.553 688 0.572 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 46 0.5 11 0.429 47 0.458 5900 10300 8000 

2 231 0.118 188 0.116 236 0.12 ∞ ∞ ∞ 

3 28 0.407 13 0.353 29 0.381 12000 21500 17000 

4 94 0.0805 47 0.08 96 0.0765 ∞ ∞ ∞ 

Notch root stress-strain for SAE15V24  Steel round bar 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 640 0.55 655 0.415 663 0.465 

2 100 -69 0.231 -80 0.098 -44 0.158 

3 280 254 0.373 290 0.238 279 0.295 

4 -280 -506 -0.196 525 -208 -505 -0.216 

5 320 479 0.318 489 0.271 489 0.271 

6 40 -21 0.098 -27 0.047 -12 0.056 

7 140 158 0.176 157 0.126 167 0.132 

8 -240 -461 -0.153 -482 -0.177 -458 -0.179 

9 500 654 0.536 657 0.413 676 0.457 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 67 0.373 65 0.31 79 0.34 12500 23000 17300 

2 93 0.071 105 0.07 115 0.0685 ∞ ∞ ∞ 

3 9 0.235 4 0.224 5 0.225 86000 155000 150000 

4 69 0.078 65 0.0395 76 0.038 ∞ ∞ ∞ 
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Table 21 Results Obtained from SAE1141Nb under Variable Amplitudes 

Notch root stress-strain for SAE1141Nb Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 554 0.75 552 0.64 581 0.61 

2 100 -95 0.42 -131 0.33 -59 0.287 

3 280 391 0.648 377 0.55 412 0.513 

4 -240 -486 -0.39 -500 -0.320 -502 -0.385 

5 291 514 0.57 544 0.490 541 0.468 

6 40 -137 0.238 -151 0.181 -113 0.143 

7 163 198 0.392 204 0.332 222 0.296 

8 -220 -468 -0.34 -483 -0.280 -480 -0.345 

9 350 559 0.74 562 0.63 585 0.603 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 

% 

(ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 34 0.57 26 0.48 39 0.49 5000 9000 8200 

2 148 0.11 123 0.11 166 0.113 ∞ ∞ ∞ 

3 23 0.455 31 0.38 30 0.4 10000 19600 16000 

4 31 0.077 27 0.0755 52 0.0765 ∞ ∞ ∞ 

Notch root stress-strain for SAE1141Nb  Steel round bar 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 602 0.563 625 0.426 627 0.464 

2 100 -93 0.253 -60 0.129 -66 0.165 

3 280 229 0.388 281 0.260 256 0.296 

4 -280 -476 -0.197 -495 -151 -478 -0.219 

5 320 459 0.321 471 0.266 471 0.263 

6 40 -41 0.111 -53 0.07 -30 0.058 

7 140 138 0.186 73 0.139 149 0.131 

8 -240 -436 -0.149 -452 -0.124 -435 -0.179 

9 500 615 0.551 635 0.402 639 0.455 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 63 0.38 44 0.29 75 0.341 15000 40000 25000 

2 68 0.0675 111 0.0655 95 0.0655 ∞ ∞ ∞ 

3 12 0.235 -41 0.195 18 0.22 1.15x105 4x105 2.3x105 

4 49 0.0375 13 0.0345 58 0.0365 ∞ ∞ ∞ 
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Table 22 Results Obtained from SAE1045 under Variable Amplitudes 

Notch root stress-strain for SAE1045 Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 529 0.826 530 0.692 570 0.665 

2 100 -96 0.471 -115 0.372 -60 0.322 

3 280 384 0.713 403 0.602 421 0.56 

4 -240 -461 -0.424 -479 -0.338 -479 -411 

5 291 486 0.636 502 0.535 516 0.516 

6 40 -141 0.279 -164 0.214 -116 0.171 

7 163 194 0.44 192 0.370 218 0.330 

8 -220 -446 -0.364 -469 -0.289 -461 -0.364 

9 350 529 0.816 538 0.690 570 0.658 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 34 0.625 25 0.515 46 0.538 4900 8000 7000 

2 144 0.121 144 0.115 160 0.119 ∞ ∞ ∞ 

3 20 0.5 17 0.412 27 0.44 2800 14500 12000 

4 27 0.0805 14 0.078 45 0.0795 ∞ ∞ ∞ 

Notch root stress-strain for SAE1045 Steel round bar 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 569 0.617 600 0.482 602 0.508 

2 100 -103 0.284 -88 0.166 -74 0.182 

3 280 219 0.425 250 0.306 247 0.322 

4 -280 -447 -0.221 -490 -0.169 -452 -0.252 

5 320 438 0.349 460 0.306 452 0.285 

6 40 -52 0.129 -69 0.085 -40 0.064 

7 140 127 0.207 155 0.162 139 0.142 

8 -240 -412 -0.169 -475 -0.139 -414 -0.207 

9 500 576 0.6 603 0.475 608 0.497 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 61 0.419 55 0.326 75 0.38 10000 21000 15000 

2 58 0.0705 81 0.073 87 0.07 ∞ ∞ ∞ 

3 13 0.259 -8 0.222 19 0.246 41000 80000 60000 

4 38 0.039 43 0.039 49 0.039 ∞ ∞ ∞ 
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Table 23 Results Obtained from SAE1141”A2” under Variable Amplitudes 

Notch root stress-strain for SAE1141 Steel flat plate 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 350 634 0.63 649 0.527 656 0.539 

2 100 -44 0.33 -40 0.233 -13 0.241 

3 280 451 0.55 475 0.445 481 0.459 

4 -240 -559 -0.33 -581 -0.288 -567 -0.380 

5 291 586 0.49 600 0.414 606 0.372 

6 40 -87 0.19 -52 0.118 -68 0.074 

7 163 253 0.34 271 0.262 272 0.222 

8 -220 -538 -0.27 -553 -0.254 -543 -0.333 

9 350 637 0.64 648 0.530 658 0.494 

Rainflow 

cycles 

Neuber’s E-Plastic (FEA) Pro. Method Cycles to failure (Nf) 

σm 

(MPa) 

% 

(ϵa) 

σm 

(MPa) 
% (ϵa) 

σm 

(MPa) 
% (ϵa) Neuber FEA 

Pro. 

M 

1 38 0.48 34 0.404 45 0.45 7200 14800 9500 

2 204 0.11 218 0.106 227 0.109 ∞ ∞ ∞ 

3 24 0.38 26 0.334 31 0.35 18500 35500 27000 

4 83 0.075 110 0.072 103 0.074 ∞ ∞ ∞ 

Notch root stress-strain for SAE1141A2 Steel round bar 

Reversal Sa (MPa) 
Neuber’s E-Plastic (FEA) Proposed 

σmax % (ϵa) σmax %(ϵa) σmax %(ϵa) 

1 500 696 0.506 740 0.384 716 0.443 

2 100 -17 0.218 18 0.093 3 0.154 

3 280 303 0.346 363 0.223 323 0.282 

4 -280 -522 -0.138 -550 -0.183 -520 -0.174 

5 320 503 0.312 520 0.254 510 0.271 

6 40 3 0.112 -55 0.048 10 0.069 

7 140 182 0.184 159 0.121 189 0.141 

8 -240 -469 -0.103 -492 -0.156 -465 -0.142 

9 500 714 0.487 743 0.383 732 0.430 

Rainflow 

cycles 

Neuber’s 
E-Plastic 

(FEA) 
Pro. Method  Cycles to failure (Nf) 

σm % (ϵa) σm % (ϵa) σm % (ϵa) Neuber FEA Pro.  

1 87 0.322 124 0.283 98 0.3 25300 47000 35000 

2 143 0.064 172 0.065 160 0.064 ∞ ∞ ∞ 

3 17 0.207 14 0.205 23 0.206 450000 620000 440000 

4 90 0.036 52 0.037 90 0.036 ∞ ∞ ∞ 
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Figure 98 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141V 

 

 

Figure 99 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141V 
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Figure 100 Cycles to Failure vs Strain Range and Mean Stress for SAE1141V 

 

 

Figure 101 Cycles to Failure vs Strain Range and Mean Stress for SAE1141V 
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Figure 102 Notch Root Strain Amplitude vs Reversals for Flat Plate of RQC-100 

 

Figure 103 Notch Root Strain Amplitude vs Reversals for Round Bar of RQC-100 
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Figure 104 Cycles to Failure vs Strain Range and Mean Stress for RQC-100 Flat Plate 

 

Figure 105 Cycles to Failure vs Strain Range and Mean Stress for RQC-100 Round Bar 
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Figure 106 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1038 

 

 

 

Figure 107 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1038 
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Figure 108 Cycles to Failure vs Strain Range and Mean Stress for SAE1038 Flat Plate 

 

 

Figure 109 Cycles to Failure vs Strain Range and Mean Stress forSAE1038 Round Bar 
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Figure 110 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1050M 

 

 

Figure 111 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1050M 
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Figure 112 Cycles to Failure vs Strain Range and Mean Stress for SAE1050M Flat Plate 

 

 

Figure 113 Cycles to Failure vs Strain Range and Mean Stress forSAE1050M Round Bar 
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Figure 114 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1117 

 

 

Figure 115 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1117 
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Figure 116 Cycles to Failure vs Strain Range and Mean Stress for SAE1117 Flat Plate 

 

 

Figure 117 Cycles to Failure vs Strain Range and Mean Stress for SAE1117 Round Bar 
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Figure 118 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE15V24 

 

 

Figure 119 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE15V24 
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Figure 120 Cycles to Failure vs Strain Range and Mean Stress for SAE15V24 Flat Plate 

 

 

Figure 121 Cycles to Failure vs Strain Range and Mean Stress for SAE15V24 Round Bar 
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Figure 122 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141Nb 

 

 

Figure 123 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141Nb 
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Figure 124 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Flat Plate 

 

 

Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Round 

Bar 
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Figure 126 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1045 

 

 

Figure 127 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1045 
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Figure 128 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Flat Plate 

 

 

Figure 129 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Round Bar 
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Figure 130 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141 

 

 

Figure 131 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141 
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Figure 132 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 Flat Plate 

 

 
 

Figure 133 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 Round Bar 
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Figure 134 Hysteresis loops for RQC-100 Flat Plate 

 

 

Figure 135 Hysteresis Loops for SAE1141V Flat Plate 
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Figure 136 Hysteresis loop for SAE1050M Flat Plate 
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 APPENDIX C 

Fatigue test machines 

Fatigue test machines may be classified based on different view-points such as; purpose of 

the test, type of stressing, operation characteristics, and type of load. 

There is another classification for fatigue testing machines based on the purpose of the 

machine as [74]: 

1. Machines for general purpose. 

2. Machines for special purpose. 

3. Equipments for testing parts and assemblies. 

Figure 137 appendix C, schematically shows a rotating bending machine which produces 

a non-uniform bending moment along the specimen length. The other type of rotating 

bending machine is shown in Figure 138 appendix C, in this case a uniform bending 

moment along the test specimen. In both cases the load is stay constant regardless the 

changes in the material mechanical properties or crack initiation and propagation. This type 

of machines is called “constant load amplitude machines”. 

Figure 139 appendix C, schematically shows a constant deflection amplitude cantilever 

bending machine, where a nonuniform bending moment is produced along the specimen, 

the load amplitude changes as the material mechanical properties changes, it increases as 

material harden and decreases as material soften or crack growth. 

Axial loaded fatigue test machine is schematically shown in Figure 140 appendix C, this 

kind of machines is capable of applying both mean and alternating axial loads. 

There are different types of machines have been designed over the years. The most 

important contribution of fatigue testing has been the closed-loop Servohydraulic test 

system [1], a modern Servohydraulic test system utilizing its own personal computer is 

shown in Figure 141 appendix C. The operational principal for this kind of machines is 
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based on generation of input signal of load, strain, or displacement using a function 

generator and applying this input through a hydraulic actuator, measuring the specimen 

response through a load cell, a clip gage or a linear variable differential transducer (LVDT), 

and comparing this with the specific input. The test data outputs are processed by a personal 

computer, the test frequency usually ranges from mHz to kHz. 

These systems are capable of perform different types of tests, constant or variable 

amplitude, strain, displacement and stress intensity factor. 

To perform a fatigue test a standard method should be followed. Standard fatigue test 

methods and procedures for metals are available from ASTM [4]. The International 

Organization for Standardization (ISO) draft standards on fatigue testing of metals are 

available through the ISO, Geneva, Switzerland. 

Fatigue Test Specimens 

There are many types and shapes of fatigue test specimens, Figure 142 appendix C, shows 

the specimens used to obtain total fatigue life, in this case no differentiation between crack 

nucleation and crack propagation. The surface of specimen has to be finely polished to 

minimize the surface roughness effects. 

Specimen (a) is used for rotating bending test; specimen (b) and (c) are used for axial 

fatigue test. Specimen (d) for axial or bending test circumferential groove usually used to 

study the effect of stress concentration. Specimen (e) is a cantilever flat sheet specimen. 

Specimens (g) to (j) are used for the study of fracture mechanics to study crack growth 

mechanisms in this case each specimen has a thin slit, notch, or groove at the middle with 

a very small root radius. The notched samples are subjected to a cyclic stress at a low stress 

intensity factor range to form a small fatigue crack at the root radius, then a real fatigue 

test can be applied. 
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Figure 137 Nonuniform bending moment machine 

 

 
Figure 138 Uniform bending moment machine 
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Figure 139 Constant deflection amplitude cantilever bending machine 

 

 

Figure 140 Axial loaded fatigue test machine 
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Figure 141 Closed-loop Servohydraulic test system including personal computer [74]. 

 

Figure 142 different types of fatigue test specimens [1].
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