LAWRENCE TECHNOLOGICAL UNIVERSITY A. Leon Linton Department of Mechanical Engineering

New Approaches to Predict Fatigue Parameters of Steels from Monotonic Properties and Estimation of Elasto-Plastic Localized Stresses and Strains

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Engineering in Mechanical Engineering (DEME)

by

Rafaa M. R. Esmaael

DEME COMMITTEE

Dr. Vernon Fernandez, Associate Prof, Academic Advisor Mechanical Engineering.

Dr. Chris Riedel, Associate Professor, Mechanical Engineering.

Dr. Giscard Kfoury, Associate Professor, Mechanical Engineering.

Dr. Abolhassan Khosrovaneh, Adjunct Faculty, General Motors Corporation (GM).

Dr. Changgong Zhou, Associate Professor, Department of Natural Science.

July, 2015

I

ProQuest Number: 3726480

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 3726480

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

LAWRENCE TECHNOLOGICAL UNIVERSITY

A. Leon Linton Department of Mechanical Engineering

New Approaches to Predict Fatigue Parameters of Steels from Monotonic Properties and Estimation of Elasto-Plastic Localized Stresses and Strains

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Engineering in Mechanical Engineering (DEME)

by

Rafaa M. R. Esmaael

Approved by:

Dr. Vernon Fernandez, (Academic Advisor)

Dr. Giscard Kfoury

Dr. Abolhassan Khosrovaneh

Dr. Chris Riedel

Dr. Changgong Zhou

ABSTRACT

Fatigue strain - life prediction model depends on six material fatigue parameters, fatigue strength coefficient σ'_f , fatigue strength exponent b, fatigue ductility coefficient ε'_f , fatigue ductility exponent c, cyclic strength coefficient K', and cyclic strain hardening exponent n'.

In this study, a new nonlinear correlation between the Brinell hardness HB and ultimate tensile strength is proposed. The prediction results obtained from this model were compared with the results obtained using Roessle-Fatemi's method and experimental data. The correlation factor in the proposed model is higher than that found in the current literature.

The ultimate tensile strength is replaced by an equivalent Brinell hardness HB expression in the Modified Universal Slopes strain-life prediction model. This change results in σ'_f and ε'_f fatigue parameters these parameters predicted using Brinell hardness HB. The new fatigue life prediction model was compared with the original Modified Universal Slopes model, and experimental data in the literature.

This model is valid for steels with hardness that ranges from 150HB to 660HB. The model is compared qualitatively and quantitatively with the Modified Universal Slopes life fatigue prediction model and experimental data. Different types of steels were employed to validate this model. The results show that the proposed model provides better fatigue life prediction when compared to the Modified Universal Slopes model, and experimental data. An accurate prediction of elasto-plastic cyclic deformation becomes extremely important in design optimization by providing accurate fatigue life prediction and that results in weight savings. Notch root stress-strain prediction is controlled by the two material parameters K' and n'. In this study a two-stage notch root prediction method is proposed. This was implemented using a correction factor to Neuber's rule notch strain amplitude as the first stage, and a linear interpolation scheme, between the results obtained from the first stage and elastic finite element analysis, as the second stage. The accuracy of this method is assessed by comparing the predicted results with the results obtained from elasto-plastic finite element analysis and Neuber's rule results. Various steels with different yield strengths were used in this study. Notch deformation behavior under cyclic fully reversed

Ш

as well as variable amplitude loading conditions was monitored for a double notched flat plate and a circumferentially notched round bar to cover plane stress and plane strain conditions. Elastic as well as elasto-plastic finite element analyses were performed. Notch strain amplitudes in addition to fatigue life predictions obtained using the proposed method are in good agreement with the elasto-plastic finite element analysis when compared to predictions obtained using Neuber's rule. ABAQUS 6.13 software was used for elastic and elasto-plastic finite element analysis. Analytical methods together with fe-safe 6.5 software were used to obtain fatigue life under each loading condition.

Dedicated To my Parents, Wife, Kids and Siblings This humble work is a sign of my love to you!

Copyright 2015, Rafaa Esmaael All right reserved

V

Acknowledgments

I would never have been able to finish my dissertation without the helpful guidance of several individuals whose contribution and assistance aided in the preparation of this research study. First and foremost, I would like to express my sincere gratitude to my advisor Dr. Vernon Fernandez, my academic supervisor for his encouragement patience, motivation, enthusiasm and support throughout this research.

Besides my advisor, I would like to thank my thesis committee: Dr. Abolhassan Khosrovaneh, GM, Dr.Chris Riedel, Associate Professor, Mechanical Engineering, Dr. Gischard Kafury, Associate Professor, Mechanical Engineering, Dr. C. Zhou, Associate Professor, Department of Natural Sciences, for their encouragement and insightful comments. I would like to express my deepest gratitude to Dr. Badih Jawad, Department Chair for his excellent guidance, caring, patience.

VI

1 TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 FATIGUE	1
1.2 HARDNESS	3
1.3 STRESS- STRAIN BEHAVIOR UNDER CYCLIC DEFORMATION	6
1.4 FATIGUE TESTS1	1
1.4.1 Fatigue loading1	1
1.5 STRESS-LIFE (S-N) APPROACH 1	2
1.5.1 Mean Stress Effect on S-N Behavior	4
1.5.2 Factors that Affect the S-N Behavior	5
1.5.3 S-N Approximations	5
1.6 The Strain-Life (ε-N) Approach1	6
1.6.1 Mean Stress Effects on Strain-Life Approach 1	8
1.7 NOTCH EFFECT 1	9
1.7.1 Stress Concentration Factor	9
1.7.2 Plane Stress and Plane Strain	4
1.7.2.1 Plane Stress	4
1.7.2.2 Plane Strain	4
1.8 MOTIVATION	5
2 LITERATURE SEARCH:	6
2.1 CORRELATIONS BETWEEN CYCLIC DEFORMATIONS WITH TENSILE PROPERTIES 2	6
2.1.1 Existing methods that estimate ultimate tensile strength from hardness 2	6
2.1.1.1 For Steels	6
2.1.1.2 For Non-Ferrous Materials	9
2.1.2 Existing Correlations between Monotonic Tensile Properties and Fatigue	
Cyclic Deformation Properties	0
2.1.3 Estimation of Fatigue Parameters using Monotonic Tensile Properties 3	3
2.1.4 Commonly Used Notch Stress-Strain Models	7
2.1.4.1 Linear rule	7
VII	

2.1.4.2 Neuber's Rule	
2.1.4.3 Glinka's Rule	
2.2 PLASTICITY	
2.2.1 Failure Theories	
2.2.1.1 Von Mises	50
2.2.1.2 Maximum Shear Stress Theory (Tresca)	
2.2.2 Isotropic and Kinematic Hardening	
2.2.2.1 Isotropic Hardening	
2.2.2.2 Kinematic Hardening	59
2.2.2.3 Prager Rule	60
2.2.2.4 Armstrong and Frederick	61
2.2.2.5 Mroz Model	
2.2.2.6 Garud	
2.2.2.7 Wang and Ohno	64
2.2.2.8 Chaboche	64
2.2.2.9 Initial Hardening Modulus	65
2.2.2.10 Nonlinear Recall Parameters	67
2.2.2.11 Multiple Kinematic Hardening Models	
2.2.3 Identification of Parameter	69
2.2.4 Combined Kinematic-Isotropic Hardening Model	
2.2.5 Multiaxial State of Stress	
2.2.6 Finite Element Analysis	73
3 STATEMENT OF PROBLEM AND THEORY	75
3.1 THE STRAIN-LIFE PREDICTION MODEL	75
3.1.1 Objectives	
3.2 NOTCH STRAIN PREDICTION MODELS	77
3.2.1 Notch Geometry	
4 PERFORMING PREDICTION METHODS	
4.1 PERFORM FATIGUE PROPERTIES ESTIMATION MODEL	
4.1.1 Correlations Among Tensile Data	
VIII	

4.1.2	Evaluation of the Proposed Strain-Life Estimation Method	85
4.1	.2.1 Qualitative Evaluation	85
4.1	.2.2 Quantitative Evaluation	89
4.2 Th	E NOTCH ROOT STRAIN PREDICTION MODEL TECHNIQUE	91
4.2.1	Methodology	
4.2.2	Developing a Prediction Method.	
4.2.3	Evaluation of the Proposed Method	
5	RESULTS AND DISCUSSIONS	102
5.1 UI	TIMATE TENSILE STRENGTH HB CORRELATION MODEL	102
5.2 St	RAIN-LIFE PREDICTION PROPOSED METHOD	102
5.3 No	DTCH ROOT PREDICTION MODEL	107
6	CONCLUSIONS	119
7	APPENDIX A	122
8	APPENDIX B	
9	APPENDIX C	171
Fatig	ue test machines	171
Fatig	ue Test Specimens	172
10	REFERENCES	176

LIST OF TABLES

Table 1 Correlation between Strain Hardening Exponent and Material's Behavior [21]. 33
Table 2 Estimation Methods for Coffin-Manson's Parameters 35
Table 3 Ranking of Estimation Methods in Total Predictability for each Material Group
[18]
Table 4 Summary of Von Mises Criterion at Different Stress Conditions 57
Table 5 Ultimate Tensile Strength Values Obtained from Proposed Method and Rossel-
Fatemi Compared with Experimental Data
Table 6 Estimated Ultimate Tensile Strength Quantitative Analysis 84
Table 7 Strain-Life Quantitative Analysis 90
Table 8 Fatigue Parameters Obtained from the Proposed and Modified Universal Slopes
Methods
Table 9 Root Stress-Strain for Flate Plate under Completely Reversed Cyclic Loading 107
Table 10 Results Obtained from RQC-100 under Completely Reversed Nominal Stress.
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress.
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress.
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress.
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress.
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 112
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 112 Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi S _u – HB
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 112 Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi S _u – HB 122
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 112 Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi S _u – HB Correlation Models Compared with Experimental Data. 122 Table 15 Results Obtained from SAE1141V under Variable Amplitudes
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 112 Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi Su – HB Correlation Models Compared with Experimental Data. 122 Table 15 Results Obtained from SAE1141V under Variable Amplitudes 142 Table 16 Results Obtained from RQC-100 under Variable Amplitudes
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 112 Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi Su – HB 122 Table 15 Results Obtained from SAE1141V under Variable Amplitudes 142 Table 16 Results Obtained from RQC-100 under Variable Amplitudes 143 Table 17 Results Obtained from SAE1038 under Variable Amplitudes 144
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 112 Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi Su – HB 112 Correlation Models Compared with Experimental Data. 122 Table 15 Results Obtained from SAE1141V under Variable Amplitudes 142 Table 16 Results Obtained from SAE1038 under Variable Amplitudes 143 Table 17 Results Obtained from SAE1038 under Variable Amplitudes 144 Table 18 Results Obtained from SAE1050M under Variable Amplitudes 145
Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress. 110 Table 12 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 111 Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress. 112 Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi Su – HB 112 Correlation Models Compared with Experimental Data. 122 Table 15 Results Obtained from SAE1141V under Variable Amplitudes 142 Table 16 Results Obtained from SAE1038 under Variable Amplitudes 143 Table 17 Results Obtained from SAE1050M under Variable Amplitudes 144 Table 18 Results Obtained from SAE1050M under Variable Amplitudes 145 Table 19 Results Obtained from SAE1117 under Variable Amplitudes 146

Table 21 Results Obtained from SAE1141Nb under Variable Amplitudes	148
Table 22 Results Obtained from SAE1045 under Variable Amplitudes	149
Table 23 Results Obtained from SAE1141"A2" under Variable Amplitudes	150

TABLE OF FIGURES

Figure 1 Elastic, Plastic and Total Strain [1] 2
Figure 2 True Stress vs True Strain for 11V41 Steel [1]
Figure 3 Formulas and the Indentation Geometry of Brinell Hardness [3]
Figure 4 Representation of Bauschinger Effect (a) Specimen under Tension (b) Specimen
under Compression (c) Tension Followed by Compression7
Figure 5 Stress-Strain Relationship for Copper under Cyclic Strain-Controlled Axial
Load (a) Fully Annealed (b) Partially Annealed (c) Cold Worked [1]7
Figure 6 Variation of Stress under Constant Strain Amplitude (a) Cyclic Hardening
Condition (b) Cyclic Softening Condition
Figure 7 Stabilized Cyclic Stress-Strain Hysteresis Loop
Figure 8 Stable hysteresis loop for determining the cyclic stress-strain curve and
comparison with the monotonic stress-strain curve for Man-Ten steel [1] 10
Figure 9 Cyclic and Monotonic Stress-Strain Curves for Different Materials [5] 10
Figure 10. Typical S-N Diagram 12
Figure 11 Relation between Rotating Bending Endurance Limit and Tensile Strength of
Wrought Steel [6] 13
Figure 12 Mean Stress Effect on S-N Behavior [1] 14
Figure 13 Basquin S-N Curve [1] 15
Figure 14 Typical Strain-Life Curve for SAE 1141 VFG 17
Figure 15 Density of Internal Force Lines around the Hole
Figure 16 Stress Distribution on a Tension Plate with Hole
Figure 17 Maximum and minimum stress in rectangular notched bar under axial tension.
Figure 18 Maximum and minimum stress for a notched shaft under axial tension 22
Figure 19 Variation of Kt with r/w Ratio [12] 23
Figure 20 Schematic Representations of Notch Root Plane Stress and Plane Strain 24
Figure 21 Ultimate Tensile Strength vs. Brinell Hardness [15] 27

Figure 22 Comparison of the Predicted and Experimental S_u for (a) Unalloyed Steel (b)
Low-Alloy Steel (c) High-alloy Steels [18]
Figure 23 Comparison of Stress Ratio at 1-Percent Strain with Virgin Tensile Properties
[19]
Figure 24 Comparison of Predicted and Experimental Fatigue Lives for low-alloy Steel
[18]
Figure 25, Average Prediction Ratio versus Strain Amplitude [32]
Figure 26 Determination of Monotonic Notch Strain using Neuber's Rule
Figure 27 Cyclic Notch Stress-Strain Determination for Constant Amplitude using
Neuber's Rule
Figure 28 Planes Passing through Point P in a body under Applied Surface Forces 51
Figure 29 Von Mises/Tresca Yield Surfaces in Principal Stress Coordinates [59]
Figure 30 Schematic Representation of Isotropic Hardening "same shape, different size"
Figure 31 Kinematic Hardening Representation "same shape, same size" 59
Figure 32 Isotropic and Kinematic Hardening under Cyclic Loading
Figure 33 Schematic Representation of Linear Kinematic Hardening
Figure 34 Stress-Strain Behavior of Linear Kinematic Hardening Model
Figure 35 Small Strain
Figure 36 High Strain
Figure 37 Effect of Kinematic Hardening Parameters Numbers
Figure 38 Half Cycle of Stress-Strain Data
Figure 39 Identification of Coefficients C and γ from Three Tension-Compression Cycles
of Different Strain Amplitudes
Figure 40 Some Types of Elements in ABAQUS
Figure 41 Notched Configurations (a) Notched Plate with 2.77 mm Radius (b)
Circumference Notched Round bar with 1.588 mm Radius
Figure 42 Predicted vs Experimental Ultimate Tensile Strength
Figure 43 Estimated, Experimental Data Ratio versus Brinell Hardness (HB)

XIV

Figure 64 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed
Method
Figure 65 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed
Method
Figure 66 Local Strain Obtained from Elasto-plastic FEA, Neuber Rule and Proposed
Method
Figure 67 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed
Method
Figure 68 Snapshot from ABAQUS Viewer for Strain Contours of Flat Plate under
Tensile Cyclic Load
Figure 69 Snapshot using fe-safe/ABAQUS Viewer for Fatigue Life Contours of Flat
Plate under Tensile Cyclic Load
Figure 70 Snapshot from ABAQUS Viewer for Strain Contours of Round Bar under
Tensile Cyclic Load
Figure 71 Snapshot using fe-safe/ABAQUS Viewer Fatigue Life Contours of Round Bar
under Tensile Cyclic Load 118
under Tensile Cyclic Load
under Tensile Cyclic Load118Figure 72 Comparison between Three Prediction Approaches for SAE 15B35, HB286Steel129Figure 73 Comparison between Three Prediction Approaches for SAE 1141, HB223 Steel129Figure 74 Comparison between Three Prediction Approaches for SAE 8620,HB326 Steel130Figure 75 Comparison between Three Prediction Approaches for SAE A538C,HB480
under Tensile Cyclic Load118Figure72 Comparison between Three Prediction Approaches for SAE 15B35, HB286129Steel129Figure 73 Comparison between Three Prediction Approaches for SAE 1141, HB223 Steel129Figure 74 Comparison between Three Prediction Approaches for SAE 8620,HB326 Steel130Figure75 Comparison between Three Prediction Approaches for SAE A538C,HB480130
under Tensile Cyclic Load118Figure72 Comparison between Three Prediction Approaches for SAE 15B35, HB286Steel129Figure 73 Comparison between Three Prediction Approaches for SAE 1141, HB223 Steel129Figure 74 Comparison between Three Prediction Approaches for SAE 8620,HB326 Steel130Figure75 Comparison between Three Prediction Approaches for SAE A538C,HB480Steel130Figure 76 Comparison between Three Prediction Approaches for SAE1015,HB130 Steel
under Tensile Cyclic Load
under Tensile Cyclic Load
under Tensile Cyclic Load
under Tensile Cyclic Load118Figure72 Comparison between Three Prediction Approaches for SAE 15B35, HB286Steel129Figure 73 Comparison between Three Prediction Approaches for SAE 1141, HB223 Steel129Figure 74 Comparison between Three Prediction Approaches for SAE 8620,HB326 Steel130Figure75 Comparison between Three Prediction Approaches for SAE A538C,HB480Steel130Figure 76 Comparison between Three Prediction Approaches for SAE1015,HB130 Steel131Figure77, Comparison between Three Prediction Approaches for SAE41817, HB277Steel131Figure 78 Comparison between Three Prediction Approaches for SAE 1090, HB309 Steel

Figure 94 Comparison between Three Prediction Approaches for AISI304, HB327 Steel
Figure 95 Comparison between Three Prediction Approaches for Man-Ten, HB150 Steel
Figure 96 Comparison between Three Prediction Approaches for VAN-80, HB225 Steel
Figure 97 Comparison between Three Prediction Approaches for AM-350, HB325 Steel
Figure 98 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141V 151
Figure 99 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141V 151
Figure 100 Cycles to Failure vs Strain Range and Mean Stress for SAE1141V 152
Figure 101 Cycles to Failure vs Strain Range and Mean Stress for SAE1141V 152
Figure 102 Notch Root Strain Amplitude vs Reversals for Flat Plate of RQC-100 153
Figure 103 Notch Root Strain Amplitude vs Reversals for Round Bar of RQC-100 153
Figure 104 Cycles to Failure vs Strain Range and Mean Stress for RQC-100 Flat Plate
Figure 105 Cycles to Failure vs Strain Range and Mean Stress for RQC-100 Round Bar
Figure 106 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1038 155
Figure 107 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1038 155
Figure 108 Cycles to Failure vs Strain Range and Mean Stress for SAE1038 Flat Plate
Figure 109 Cycles to Failure vs Strain Range and Mean Stress forSAE1038 Round Bar
Figure 110 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1050M 157
Figure 111 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1050M. 157
Figure 112 Cycles to Failure vs Strain Range and Mean Stress for SAE1050M Flat Plate
Figure 113 Cycles to Failure vs Strain Range and Mean Stress for SAE1050M Round Bar

XVII

Figure 114 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1117 159
Figure 115 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1117 159
Figure 116 Cycles to Failure vs Strain Range and Mean Stress for SAE1117 Flat Plate
Figure 117 Cycles to Failure vs Strain Range and Mean Stress for SAE1117 Round Bar
Figure 118 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE15V24 161
Figure 119 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE15V24 161
Figure 120 Cycles to Failure vs Strain Range and Mean Stress for SAE15V24 Flat Plate
Figure 121 Cycles to Failure vs Strain Range and Mean Stress for SAE15V24 Round Bar
Figure 122 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141Nb 163
Figure 123 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141Nb 163
Figure 124 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Flat Plate
164 Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Round Bar
164 Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Round Bar
164 Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Round Bar
164 Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Round Bar
164Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb RoundBar164Figure 126 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1045Figure 127 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1045Figure 128 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Flat Plate166Figure 129 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Round Bar166
164Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb RoundBar
164Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb RoundBar
164Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb RoundBar
164 Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Round Bar 164 Figure 126 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1045 165 Figure 127 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1045 165 Figure 128 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Flat Plate 166 Figure 129 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Round Bar 166 Figure 130 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141 167 Figure 131 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141 167 Figure 132 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 167 Figure 132 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 167 Figure 132 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 167 Figure 132 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 167 Figure 132 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 168
164Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb RoundBar164Figure 126 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1045Figure 127 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1045Figure 128 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Flat Plate166Figure 129 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Round Bar166Figure 130 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141167Figure 131 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141167Figure 132 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 Flat Plate168Figure 133 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 Round Bar

XVIII

Figure 134 Hysteresis loops for RQC-100 Flat Plate 16	59
Figure 135 Hysteresis Loops for SAE1141V Flat Plate	59
Figure 136 Hysteresis loop for SAE1050M Flat Plate 17	0
Figure 137 Nonuniform bending moment machine 17	73
Figure 138 Uniform bending moment machine 17	73
Figure 139 Constant deflection amplitude cantilever bending machine	74
Figure 140 Axial loaded fatigue test machine 17	74
Figure 141 Closed-loop Servohydraulic test system including personal computer [74].17	' 5
Figure 142 different types of fatigue test specimens [1]17	<i>י</i> 5

1. INTRODUCTION

1.1 FATIGUE

Fatigue is defined as a material failure under cyclic loading. At least half of all mechanical failures are due to fatigue. Estimates state that 50 to 90 percent of all mechanical failures are fatigue failures; most of these failures are unexpected [1]. Fatigue failures usually happen with little or no warning.

The American Society for Testing and Materials (ASTM), define fatigue as the progressive, localized, and permanent structural change that occurs in a material subjected to repeated or fluctuating strain at nominal stresses with maximum values less than the tensile strength of the material [1]. For fatigue to occur a cyclic plastic deformation should occur at stress concentration regions where the stress is greater than the material tensile strength despite the nominal stress still in the elastic region.

The yield point in the stress-strain curve is defined as the point at which plastic deformation occurs and Hook's law no longer holds true. The yield criterion is defined as the elastic limit of elasticity under a combination of stresses. For some materials the yield point is not easily defined, in such cases, the offset method is used; this method is based on using a 0.2% strain (.002in/in), a line parallel to the initial straight-line portion of stress-strain curve is drawn, the yield point is the point where this line intersect the curve, the stress at this point of intersection is called the yield strength of material. An increase in stress past the yield point results in a curve that rises continuously but becomes flatter until it reaches a maximum stress referred to as the ultimate stress, σ_u . the rise in the curve in this manner is called strain hardening of the material [2].

Total engineering strain (ϵ) is a combination of the two components: elastic strain, $\epsilon_e = \sigma/E$, and plastic strain ϵ_p . Figure 1, shows schematic of elastic and plastic strain curve

Figure 1 Elastic, Plastic and Total Strain [1]

The relationship between true plastic stress as a function of true plastic strain is a power function equation given by:

$$\sigma = K(\varepsilon_p)^n \tag{1}$$

Where (k) and (n) are the strength coefficient and strain hardening exponent of the material respectively.

A plot of true plastic stress versus true plastic strain on a log-log scale results in a linear curve shown in Figure 2 for 11V41 steel.

Figure 2 True Stress vs True Strain for 11V41 Steel [1].

Combining elastic and plastic true strain equations results in the total strain equation given by:

$$\varepsilon = \varepsilon_e + \varepsilon_p = \frac{\sigma}{E} + \left(\frac{\sigma}{K}\right)^{\frac{1}{n}}$$
 (2)

The value of (n) represents the ability of the material to work harden and ranges from 0 to 0.5 for steels.

1.2 HARDNESS

Hardness is defined as the resistance of solid material to a permanent shape change when pressure is applied on its surface. Hardness depends generally on many material properties such as, ductility, strength, toughness, and plasticity.

Three types of measurements are commonly used for hardness, Scratch hardness, Indentation hardness and Rebound hardness.

a) Scratch hardness, is the measure of the resistance of the material surface to fracture due to friction of a sharp object.

- b) Rebound hardness, sometimes called 'dynamic hardness' measure the height of the "bound" of a diamond-tipped hammer dropped from a fixed height on to the material surface.
- c) Indentation hardness is the resistance of a material surface to a constant compression load. The test is based on measuring of indentation left by a specifically dimensioned indenter. There are four common indentation hardness scales, Rockwell, Shore, Vickers and Brinell.

Brinell hardness scale was proposed by Swedish engineer Johan August Brinell in 1900. The typical test is based on using 10 mm diameter steel ball with 3000 kgf.

The Brinell hardness calculations is calculated using the equation:

$$BHN = \frac{2P}{\pi D \left(D - \sqrt{D^2} - d^2 \right)} \tag{3}$$

Where:

P = applied force (kgf)

D = diameter of indenter (mm)

d = diameter of indentation (mm)

Figure 3 shows the geometrics and specifications for hardness testing.

		Shape of	indentation		
Test	Indenter	Side view	Top view	Load, P	Hardness number
Brinell	10-mm steel or tungsten carbide ball			500 kg 1500 kg 3000 kg	$HB = \frac{2P}{(\pi D)(D - \sqrt{D^2 - d^2})}$
Vickers	Diamond pyramid		LA K	1–120 kg	$HV = \frac{1.854P}{L^2}$
Knoop	Diamond pyramid	L/b = 7.11 b/t = 4.00	$\begin{array}{c} b \\ \downarrow \\$	25 g–5 kg	$HK = \frac{14.2P}{L^2}$
Rockwell A C D	Diamond cone	120°	0	60 kg 150 kg 100 kg	HRA HRC HRD = 100 - 500t
B F G	$\frac{1}{16}$ - in. diameter steel ball	$\underbrace{\bullet}_{t=mm}$	0	100 kg 60 kg 150 kg	HRB HRF HRG $ = 130 - 500t $
E	$\frac{1}{8}$ - In. diameter steel ball			100 kg	HRE

Figure 3 Formulas and the Indentation Geometry of Brinell Hardness [3].

1.3 STRESS- STRAIN BEHAVIOR UNDER CYCLIC DEFORMATION

The stress-strain behavior under a monotonic test is different from the behavior under cyclic test. This difference was observed by Bauschinger in 1886. He discovered that the yield strength in tension or compression is reduced after applying a load of opposite sign which cause inelastic deformation.

This can be clearly seen in Figure 4, where the yield strength in compression is significantly reduced prior yielding in tension [1].

Morrow [4] carried out tests on three copper specimens heat treated as: (a) fully annealed condition (b) partially annealed, and (c) cold worked (hardened). In each case the stress-strain curve is continuously monitored during cyclic strain- controlled testing, as shown in Figure 5. The hysteresis loops started with a monotonic tensile stress-strain solid curve from the origin to the first reversal, the last hysteresis loop is also represented by a solid line. The remaining curves represent the change in the stress-strain curves during plastic cyclic straining. The fully annealed (soft) specimen (a) is cyclically hardened where the stress range is increased to reach the constant amplitude strain range. On the other hand, the cold worked specimen (c) is cyclically softened which appear a stress decrease. The partially annealed specimen (b) initially appears cyclic hardening followed by cyclic softening behavior. The cyclic hardening or softening is related to the density, movement and arrangement of the dislocation.

Figure 4 Representation of Bauschinger Effect (a) Specimen under Tension (b) Specimen under Compression (c) Tension Followed by Compression.

Figure 5 Stress-Strain Relationship for Copper under Cyclic Strain-Controlled Axial Load (a) Fully Annealed (b) Partially Annealed (c) Cold Worked [1].

A representation of cyclic hardening or softening behavior under a condition of straincontrolled testing can be done by plotting of stress variation as a function of the number of cycles, as shown in Figure 6. In the case of cyclic hardening the resistance to deformation increases as the number of cycles increases (Figure 6a), the opposite occurs in the case of cyclic softening where the resistance to deformation decreases by increasing the number of cycles, (Figure 6b).

Figure 6 Variation of Stress under Constant Strain Amplitude (a) Cyclic Hardening Condition (b) Cyclic Softening Condition

Usually within 10 to 40 percent of the total fatigue life the stress variation reaches a state of cyclic stabilization which is referred to as "cyclic transient behavior" it is often a hysteresis loop at half of fatigue life chosen which represent the steady-state cyclic stress-strain behavior of the material. Figure 7 shows the stable cyclic stress-strain hysteresis loop.

The relationship between total true strain $\Delta \varepsilon$, true stress range $\Delta \sigma$, elastic strain range $\Delta \varepsilon_{e}$, and plastic true strain range $\Delta \varepsilon_{p}$, is given by the equation:

$$\Delta \varepsilon = \Delta \varepsilon_e + \Delta \varepsilon_p = \frac{\Delta \sigma}{E} + \Delta \varepsilon_p \tag{4}$$

The difference between true and engineering strain values is usually negligible since the strain levels during the cyclic loading are below 2 percent. These values are much lower than the strain values in the case of monotonic loading.

In order to obtain a cyclic stress-strain curve for a given material a family of hysteresis loops can be connected as shown in Figure 8 for (Man-Ten steel).

Figure 7 Stabilized Cyclic Stress-Strain Hysteresis Loop

Figure 8 Stable hysteresis loop for determining the cyclic stress-strain curve and comparison with the monotonic stress-strain curve for Man-Ten steel [1].

Langraf, Morrow, and Endo [5] presented the monotonic and cyclic stress-strain curves for different materials including softening and hardening. They demonstrated that soft materials tends to harden under cyclic loading whereas hard materials have an opposite behavior. They tend to soften under cyclic loading, as shown in Figure 9.

Figure 9 Cyclic and Monotonic Stress-Strain Curves for Different Materials [5]

A plot of plastic stress amplitude, $\Delta\sigma/2$, versus plastic strain amplitude, $\Delta\epsilon_p/2$, in a log-log scale results in the relationship:

$$\sigma_a = K' \left(\frac{\Delta \varepsilon_p}{2}\right)^{n'} \tag{5}$$

Where K' and n' are the cyclic strength coefficient and cyclic strain hardening exponent, respectively. Eq. (5) can be written in a different form using Eq. (4) as:

$$\varepsilon_a = \frac{\Delta\varepsilon}{2} = \frac{\Delta\varepsilon_e}{2} + \frac{\Delta\varepsilon_p}{2} = \frac{\Delta\sigma}{2E} + \left(\frac{\Delta\sigma}{2K'}\right)^{1/n'} = \frac{\sigma_a}{E} + \left(\frac{\sigma_a}{K'}\right)^{1/n'} \tag{6}$$

The range of n' values is smaller than for monotonic it ranges from .05 to .25 for most of metals. The value for cyclic yield strength is often defined at 0.2 percent strain offset of plastic strain amplitude.

1.4 FATIGUE TESTS

1.4.1 Fatigue loading

Structures and components are usually subjected to alternating load histories which are sometimes simple and repetitive. However, in most cases these histories are completely random and may contain high loading peaks that exceed the elastic limit of the material. To understand material fatigue behavior and its properties, it is convenient to start with a constant amplitude loading. Some real-life load histories can be modeled as constant amplitude.

 $R = S_{min}/S_{max}$, is called stress ratio and is commonly used as a test condition to obtain fatigue properties, When S_{min} equal $-S_{max}$, R = -1 this condition is called "fully reversed" condition. In the case where $S_{min} = 0$ this condition is called "pulsating tension". In fatigue studies it is convenient to use reversal instead of a complete cycle, in which case one cycle equals two reversals. Description of fatigue testing and loading is shown in appendix C.

1.5 STRESS-LIFE (S-N) APPROACH

The stress-life method is the oldest approach used to understand and quantify behavior of metal fatigue. This method is used when the elastic strain is dominant and no significant plastic strain is encountered

A plot of alternating stress, S_a versus number of cycles to failure, N_f in a log-log scale results in a diagram called Wholer or S-N diagram shown in Figure 10.

Figure 10 Typical S-N Diagram

The main disadvantage of this method is that it does not include the true stress-strain behavior and considers all strains as elastic strains, the crack initiation is usually occurs under plastic deformation state.

When the S-N data is plotted on a log-log scale, the actual line represents the mean data. Most body center cubic (BCC) crystal structure materials (Steel) show a discontinuity or "knee" indicated as point **a** in the S-N curve, the nominal stress at knee point is defined as fatigue strength or fatigue limit, below this point the material has infinite number of cycles to failure. This knee is between 10^6 and 10^7 cycles under noncorrosive environment. In general, most materials do not have a knee.

Fatigue typically consists of three stages, crack nucleation, crack growth, and final fracture. Figure 10, does not facilitate between these stages its gives only the total fatigue life. There are certain general empirical relationships between the fatigue properties of steel and the less expensively monotonic tension and hardness properties [6].

There is a ratio called "fatigue ratio (S_f/S_u) " this ratio ranges from 0.35 to 0.6. For most steels with a tensile strength below 1400 MPa (200 ksi) the fatigue ratio is 0.5. Carbide inclusions formed during the tempering of martensitic steels with an ultimate tensile strength of more than 1400 MPa (200 ksi) becomes a source of crack initiation points and effectively reduces the fatigue limit. The fatigue limit for these materials is approximated by a constant value of 700 MPa (100 ksi), this behavior is shown in Figure 11, where the ultimate tensile strength is plotted versus the endurance limit.

For steels the ultimate tensile strength (S_u) can be approximated using Brinell hardness (HB) given by Eq. (7):

Figure 11 Relation between Rotating Bending Endurance Limit and Tensile Strength of Wrought Steel [6].

1.5.1 Mean Stress Effect on S-N Behavior

Fatigue behavior is strongly affected by the mean stress, S_m , this effect is shown in Figure 12, where the stress amplitude, S_a is plotted against the number of cycles to failure, N_f , for varying mean stresses. In general as shown in the figure compressive mean stresses are beneficial, on the other hand, the tensile mean stresses are detrimental this can be observed by the intercepts of the three vertical lines with the fatigue life line N_{fc} , N_{fo} and N_{ff} .

Figure 12 Mean Stress Effect on S-N Behavior [1].

The tensile mean stress effect for uniaxial state can be represented in the following equations:

Modified Goodman equation
$$\frac{S_a}{S_f} + \frac{S_m}{S_u} = 1$$
 (8)

Gerber equation
$$\frac{S_a}{S_f} + \left(\frac{S_m}{S_u}\right)^2 = 1$$
 (9)

Morrow equation $\frac{S_a}{S_f} + \frac{S_m}{\sigma_f} = 1$ (10) Where, $S_a, S_m, S_f, S_u, \sigma_f$, are stress amplitude, mean stress, fatigue strength, tensile

strength and fracture strength respectively.

1.5.2 Factors that Affect the S-N Behavior

There are three main factors that affect the behavior of S-N including, microstructure, size of the test specimen, and surface finish. Details are shown in appendix C.

1.5.3 S-N Approximations

When experimental fatigue data is not available in data handbooks, design codes, or from the test data, there is another option which is a prediction model. There are many prediction models, these models usually imply a median fatigue life.

Figure 13 shows S-N median fatigue curves based on a straight-line log-log approximation.

Basquin in 1910 [7] suggested a log-log straight line S-N approximation in Eq. (11):

$$S_a = A \left(N_f \right)^B$$
(11)
ess at R= -1 N_f number of cycles A is the coefficient its the

Where, S_a alternating stress at R= -1, N_f number of cycles, A is the coefficient its the value at the intercept at N_f equal one, and B is the slope of log-log S-N curve.

Figure 13 Basquin S-N Curve [1]

1.6 The Strain-Life (ε-N) Approach.

Fatigue philosophy has changed from one based on an endurance limit method to one based upon a more precise assessment of fatigue, the strain-life (ε -N) approach has gained wide acceptance, particularly in the ground vehicle industry [8]. This approach combines the localized highest measured/design strains applied to the structure and the material's fatigue properties. The material's fatigue properties are characterized by the strain-life curves, obtained from strain-controlled fatigue testing of smooth specimens [9]. Total strain amplitude is divided in two components, elastic ($\Delta \varepsilon_e/2$) and plastic ($\Delta \varepsilon_p/2$) strain amplitudes and given by:

$$\frac{\Delta\varepsilon}{2} = \frac{\Delta\varepsilon_{\rm e}}{2} + \frac{\Delta\varepsilon_{\rm p}}{2} \tag{12}$$

Where, $\Delta \varepsilon/2$, $\Delta \varepsilon_e/2$, $\Delta \varepsilon_p/2$ is the total, elastic and plastic strain amplitudes respectively. The elastic strain-life relation can be considered as the stress-life relationship divided by the modulus of elasticity given by:

$$\frac{\Delta\sigma}{2E} = \frac{\Delta\varepsilon_e}{2} = \frac{\sigma'_f}{E} \left(2N_f\right)^b \tag{13}$$

Where, $\Delta\sigma/2$ is the stress amplitude; $2N_f$ is the reversal to failure; σ'_f is the fatigue strength coefficient which is the intercept of the log ($\Delta\sigma/2$) versus log ($2N_f$) plot for $2N_f$ equal one, b is called fatigue strength exponent which is the slope of the elastic curve, and E is the modulus of elasticity. Plastic strain-life relationship can be written as:

$$\frac{\Delta \varepsilon_{\rm p}}{2} = \varepsilon_f' \left(2N_f\right)^{\rm c} \tag{14}$$

Where, ϵ'_{f} is the fatigue ductility coefficient taken as the intercept of the plastic curve for $2N_{f}$ equal one and c is the fatigue ductility exponent which is the slope of the plastic curve.

Combining the elastic and plastic components results in a form of strain-life relationship given by Eq.(15) and shown in Figure 14 for 1141 VFG steel

$$\frac{\Delta\varepsilon}{2} = \frac{\sigma_f'}{E} \left(2N_f\right)^{\rm b} + \varepsilon_f' \left(2N_f\right)^{\rm c} \tag{15}$$

The four fatigue parameters needed in this relationship are the fatigue strength coefficient(σ'_f), fatigue strength exponent (b), fatigue ductility coefficient (ϵ'_f) and fatigue ductility exponent (c)

The strain-life approach considers the plastic deformation that occurs at localized regions where the crack nucleation usually occurs. This approach is also known the comprehensive approach.

Figure 14 Typical Strain-Life Curve for SAE 1141 VFG

1.6.1 Mean Stress Effects on Strain-Life Approach

The effect of mean stress in the case of strain-life fatigue behavior is complex. There are many models proposed for strain-life fatigue, one of these models called "Morrow's mean method", in this method the fatigue strength coefficient is replaced with $(\sigma_f' - \sigma_m)$ in the strain-life approach Eq (15).

$$\frac{\Delta\varepsilon}{2} = \frac{(\sigma'_f - \sigma_m)}{E} (2N_f)^b + \varepsilon'_f (2N_f)^c$$
(16)

Where σ_m is the mean stress.

When the σ_m is positive it refers to a positive tensile value while when σ_m is negative it refers to a compressive value. According to this equation the tensile mean stress is detrimental while the compressive mean stress is beneficial to fatigue life. An alternative version of Morrow's mean stress parameter where both the elastic and plastic terms are affected by the mean stress is given by Eq. (17), [10].

$$\frac{\Delta\varepsilon}{2} = \left(\frac{\sigma_f' - \sigma_m}{E}\right) (2N_f)^b + \varepsilon_f' \left(\frac{\sigma_f' - \sigma_m}{\sigma_f'}\right)^{c/b} (2N_f)^c \tag{17}$$

Another equation has been suggested by Smith, Watson, and Topper [11], this equation is usually known as "SWT parameter" and given by:

$$\sigma_{max}\varepsilon_a E = \left(\sigma_f'\right)^2 \left(2N_f\right)^{2b} + \sigma_f'\varepsilon_f' E\left(2N_f\right)^{b+c}$$
(18)

Where $\sigma_{max} = \sigma_m + \sigma_a$ and ε_a is the alternating strain.

1.7 NOTCH EFFECT

Threads, holes, grooves, and welds cannot be avoided when designing structures or mechanical components. These geometrical discontinuities are generally termed as notches [12]. When the component is loaded, local stress and strain are induced at these locations which in most cases exceeds the elastic limit of the material in the region around the notch root even when the nominal stress is still within the elastic limit. When the material subjected to a cyclic loading, the cyclic plastic deformation in these highly stressed locations can cause a high reduction in the component life. Cyclic plastic strains at the notch root can be a location for crack initiation and subsequent propagation which then leads to component failure.

Stress - strain state at the notch root is extremely important in fatigue life calculations. In order to define the local stress-strain state at the notch root the local stress σ has to be related to the nominal stress S. There are many models to relate the nominal stress to local stress and strain as described in the following sections. The factor used in such situation is called stress concentration factor and represented by K.

1.7.1 Stress Concentration Factor

The stress concentration also known as stress raisers, it is a location on a component where the stress concentrated. When a flat plate with a center hole loaded such as in Figure 15, to meet the equilibrium condition the internal force lines become denser around the hole.

Figure 15 Density of Internal Force Lines around the Hole

The stress concentration factor K can be defined as the ratio of the maximum stress in the body to some other stress taken as a reference stress [13].

For tension or bending
$$K_t = \frac{\sigma_{max}}{\sigma_{nom}}$$
 (19)

For torsion
$$K_t = \frac{\tau_{max}}{\tau_{nom}}$$
 (20)

Where, σ_{max} , τ_{max} , are the maximum stresses expected on the component and σ_{nom} , τ_{nom} , the normal and shear stresses. The subscript **t** refers to the theoretical stress concentration factor.

For a tension plate with a hole in center, the maximum stress occurs at point A in Figure 16. The stress distribution is also shown in Figure 16. The reference stress is based on the net cross sectional area and is defined in Eq. (21) as:

$$\sigma_n = \frac{P}{(H-d)h} \tag{21}$$

Figure 16 Stress Distribution on a Tension Plate with Hole

The stress concentration factor based on the reference stress $\sigma_n = \sigma_{nom}$ can be obtained using Eq. (22) as:

$$K_{tn} = \frac{\sigma_{max}}{\sigma_n} = \frac{\sigma_{max}(H-d)h}{P}$$
(22)

The stress distribution in three dimensional case for a rectangular notched tension bar and round shaft is shown in Figure 17 and Figure 18.

Figure 17 Maximum and minimum stress in rectangular notched bar under axial tension.

Figure 18 Maximum and minimum stress for a notched shaft under axial tension

The stress concentration factor is affected by the component geometry. Figure 19 shows the variation of K_t with the diameter width ratio for a tension bar with a hole subjected to a tensile load.

Figure 19 Variation of Kt with r/w Ratio [12]

Different techniques can be used to calculate the stress concentration factor such as, photoelasticity and strain gages, but the most powerful technique used in industry is the finite element analysis. Theory of elasticity is used to calculate the stress concentration factor, this theory is based on formulations that include assumptions that the material is isotropic and homogenous. However, in reality the material may be neither be isotropic nor homogenous or it may have defects such as voids, porosity or microcracks. Accuracy of K values for some materials and applications is still an issue.

The stress concentration factor is used mainly to correlate the nominal stress with the maximum stress generated in some local areas on the component which in most cases exceeds the yield limit of the material. There are different models proposed to obtain the maximum stress with the aid of the elastic stress concentration factor.

23

1.7.2 Plane Stress and Plane Strain

1.7.2.1 Plane Stress

Plane stress is a state of stress in which the normal stress σ_z , shear stress τ_{xy} and τ_{yz} are assumed to be zero. The plane stress is the simplest form of behavior of continuum structures and is the most used condition in practice.

1.7.2.2 Plane Strain

Plane strain is a state of strain in which the strain normal to the x-y plane, ε_z and shear strains are assumed to be zero, in this case the dimension of the structure in z-direction is very large compared with other directions, the surrounding elastic material restrain notch deformation in the thickness direction.

The plane stress and plane strain conditions are schematically shown in Figure 20.

Figure 20 Schematic Representations of Notch Root Plane Stress and Plane Strain

Conditions

1.8 MOTIVATION

Considering the amount of time and effort required to obtain the fatigue parameters from fatigue experiment, many researchers have attempted to develop correlations between monotonic tensile data, so that, prediction of fatigue parameters from simple material properties can be used instead of physically testing the material. One of the aims of this study is to find a good correlation between simple material properties which are easy to obtain, and fatigue parameters.

The best fatigue parameters prediction model for steels is the Modified universal Slopes model Eq.(121), where the prediction of σ'_f and ε'_f is based mainly on the ultimate tensile strength, modulus of elasticity ratio (S_u/E). Ultimate tensile strength is a material property obtained by conducting a tensile test on a material sample until failure, it is a destructive test that needs time to prepare the samples. The aim is to predict the fatigue parameters using a less expensive and easy to obtain material property such as hardness in the Modified Universal Slopes model and replace the ultimate tensile strength.

Prediction of local stress and strain is essential in design, the best way to obtain stresses and strains at notches is to perform elastio-plastic finite element analysis. However, such an analysis is time consuming and has convergence issues when used on complex components. Neuber's rule is the most popular analytical method used in industry overestimates notch stresses and strains hence, a correction factor is needed. Based on the simplicity of applying elastic finite element analysis the second objective of the study is to use elastic finite element analysis in conjunction with a correlation factor to Neuber's rule to estimate local stresses and strains at notch roots. These results can then be compared with the elastic-plastic finite element results.

2 LITERATURE SEARCH:

2.1 Correlations between Cyclic Deformations with Tensile Properties.

In design, proper selection of material for cyclically loaded structures is very important. In order to know the stress-strain response of cyclically loaded structures, fatigue parameters should be available. Without doubt, the best way is to conduct comprehensive test experiments. However, fatigue test experiments are expensive and time consuming, also in most cases fatigue test experiments do not give an accurate results when they are repeated. In order to optimize the test results the least square fit is applied. Therefore, theoretically estimating the cyclic deformation properties from commonly available monotonic tensile properties such as ultimate tensile strength (S_u), hardness, or strain hardening exponent (n) with reasonable accuracy is very useful.

2.1.1 Existing methods that estimate ultimate tensile strength from hardness

2.1.1.1 For Steels

In order to find correlations between monotonic tensile properties and cyclic properties it may be convenient to start with correlations between monotonic properties based on that correlations with the cyclic properties can be created. The well-known approximation of the ultimate tensile strength, S_u from Brinell hardness, HB, for low and medium strength carbon and alloy steel is presented by a linear relationship given by Eq. (23), [14]:

$$S_u=3.45HB (MPa)$$
 (23)

Eq. (23) agrees well with experimental data for HB < 350, [15].

A second order polynomial approach proposed by Roessle and Fatemi, correlates S_u and hardness as, Eq. (24), [15]:

$$S_u = 0.0012(HB)^2 + 3.3(HB) (MPa)$$
(24)

Figure 21; shows the two relations in Eq. (23),(24).

Figure 21 Ultimate Tensile Strength vs. Brinell Hardness [15].

Baumel-Seeger's [16] proposed the following relationship between ultimate tensile strength and Vickers hardness:

$$\sigma_u = 3.29HV - 47 (MPa) \text{ for HV} \le 445$$

$$\sigma_u = 4.02HV - 374 (MPa) \text{ for HV} > 445$$
(25)

Where, HV is Vickers Hardness.

JSMS (The Society of Materials Science, Japan) [17] proposed the equation below:

$$\sigma_u = \frac{(HV - 1.837)}{0.304} \ (MPa) \tag{26}$$

Kwang-Soo Lee [18], evaluated the four proposed estimation methods using different data sources, (NRIM, Boller-Seeger, JSMS). Figure 22; shows the comparison of these methods for different alloy steels. It concluded that Roessle-Fatemi's ultimate tensile strength-hardness method gives a reasonable results compared with the other methods.

المنسارة للاستشارات

www.manaraa.com

28

Figure 22 Comparison of the Predicted and Experimental S_u for (a) Unalloyed Steel (b) Low-Alloy Steel (c) High-alloy Steels [18].

2.1.1.2 For Non-Ferrous Materials

JSMS [17], proposed an equation to estimate ultimate tensile strength from hardness for aluminum and copper as:

$$\sigma = \frac{(HV - 21.9)}{0.242} (MPa)$$
(27)

2.1.2 Existing Correlations between Monotonic Tensile Properties and Fatigue Cyclic Deformation Properties.

Many researchers proposed correlation methods to predict the fatigue cyclic deformation behavior of steels from monotonic tensile properties and hardness. The first correlation method was developed by Manson [19], it correlates the hardening or softening behavior with the ultimate tensile strength to yield strength ratio (S_u/S_y) for sixteen different materials including steel, aluminum, and titanium alloys. Different types of steels were used, AISI 4340 (annealed and hard), AISI 52100, AISI 304 ELC (annealed and hard), AISI 310 (annealed) and AM 350 (annealed and hard). Tensile tests to obtain the monotonic tensile properties and strain-controlled fatigue tests to find the cyclic stressstrain curves were performed on each material. The results show that materials that have $S_u/S_y \ge 1.4$, hardened under cyclic strain; materials that have $S_u/S_y \le 1.2$ soften under cyclic strain; materials that have $1.2 < S_u/S_y < 1.4$ have both behaviors. This is shown in Figure 23.

Figure 23 Comparison of Stress Ratio at 1-Percent Strain with Virgin Tensile Properties [19]

Landgraf et al. [5], proposed a correlation between the strain hardening exponent (n) and the cyclic hardening and softening for several materials as shown in Table 1.

Z.P. Zhang [20], proposed a parameter called fracture ductility (α) and defined as:

$$\alpha = \psi \varepsilon_f = -\psi ln(1 - \psi) \tag{28}$$

Because ψ , a percent reduction in area, it reflects the fracture ductility of materials, α also reflects the fracture ductility of materials.

Zhang et al. [21], conducted a study to relate (α) and cyclic hardening or softening behavior using 40 different alloys including (aluminum, titanium, and steel), according to this study they found that as the fracture ductility parameter is less 2% or between 20% and 65%, the material behavior soften under cyclic loading, for fracture ductility between 2% and 20% the material is cyclically harden.

There are many approaches that relate the cyclic strength coefficient (K') and cyclic strain exponent (n') using monotonic tensile properties and hardness. Zhang et al. [21], proposed a method to estimate the cyclic strain exponent from monotonic tensile properties. In order to estimate the strain hardening exponent (n'), three characteristics are defined based on monotonic tensile properties; these are:

$$n' > n$$
 for $\alpha < 20\%$ and for $\sigma_{f}/\sigma_{0.2} < 1.6$. (29)

$$n' < n \text{ for } \alpha < 20\% \text{ and for } \sigma_f / \sigma_{0.2} > 1.6$$
 (30)

$$(\sigma_{\rm f} - \sigma_{\rm u})/\sigma_{0.2} \approx n/n' \text{ for } \alpha > 20\%$$
(31)

Where $\sigma_f \sigma_u$, $\sigma_{0.2}$ are strength coefficient, ultimate tensile strength, and yield strength respectively.

According to the above characteristics the following relationships was proposed:

$$n' = 1.06n \left(1 + \beta \left| 1 - \frac{\sigma_u}{\sigma_{0.2}} \right| \right)$$
(32)

For $\alpha < 5\%$ or for $10\% \le \alpha < 20\%$

$$n' = 1.06n \left(1 + \beta \left| 1 - \frac{\sigma_f}{\sigma_u} \right| \right)$$

For 5% < \alpha < 10% (33)

$$n' = \left[\frac{\sigma_{0.2}}{\sigma_f' - \sigma_u}\right] n \tag{34}$$

For $\alpha > 20\%$

In Eq. (32),(33), $\beta = 1$ for $\sigma_f'/\sigma_{0.2} < 1.6$, but $\beta = -1$ for $\sigma_f'/\sigma_{0.2} > 1.6$. Zhang, Qiao [21], proposed an estimation method to predict cyclic strength coefficient (K') in MPa from monotonic strength coefficient (K) in MPa as:

$$K' = 57K^{0.545} - 1220 \tag{35}$$

Eq. (35), obtained by using a least squares for experimental data of seventeen alloys including (Aluminum, steel, and titanium).

Basan et al. [22], derived an equation that correlate the cyclic strength coefficient (K') and Brinell hardness by investigation of forty 42CrMo4 steels gathered from literature, a least squares fit using second order polynomial results in the following equation with $R^2 = 0.703$.

$$K' = 0.009(HB)^2 + 0.117(HB) + 376.75$$
(36)

Li et al. [23], provided an estimation method to predict cyclic strength (S_y') using ultimate tensile strength (S_u) and percent reduction in area (RA) as:

$$S'_{y} = (1 + RA)S_{u} \left[\frac{0.002}{ln(1 - RA)}\right]^{0.16}$$
(37)

The data used to derive the above expression was based on studies performed on twentyseven alloys from [24, 25].

Table 1 shows that when (n) is greater than 0.2, cyclic hardening is expected. When (n) less than 0.1 cyclic softening is experienced. Mixed behavior experienced in between.

Material	Condition	0.2% S _y S _y /S _y ' (ksi)	n/n [′]	Cyclic behavior
OFHC Copper	annealed partial annealed cold worked	3/20 37/29 50/34	0.4/0.15 0.13/0.16 0.1/0.12	hardens stable soften
2024 aluminum	T4	44/65	0.2/0.11	harden
7075 aluminum	T6	68/75	0.11/0.11	harden
Man-Ten steel	as-received	55/50	0.15/0.16	soften and harden
SAE 4340 steel	Q&T, 350 BHN	170/110	0.066/0.14	soften
Ti-8Al-1Mo-1V	duplex annealed	145/115	0.078/0.14	harden
SAE 1045 steel	Q&T, 595 BHN	270/250	0.071/0.14	stable
SAE 4142 steel	as-quenched, 670 BHN	235/	0.14/	hardens

Table 1 Correlation between Strain Hardening Exponent and Material's Behavior [21]

2.1.3 Estimation of Fatigue Parameters using Monotonic Tensile Properties.

Several estimates of Coffin-Manson's parameters have been proposed in the literature. Table 2 since Morrow [26], who in 1964 correlated the b and c exponents with the cyclic hardening exponent n'. Manson's universal slopes method [27], Manson's four-point correlation method [27], Rask-Morrow method [28], Mitchell method [29], Muralidharan and Manson [30], Baumel and Seeger [16], Ong's modified 4-point correlation method [31], Roessle and Fatemi [15], Median's method [32].

Among the above mentioned methods, Baumel-Seeger's uniform material law [16] and Maggiolaro-Castro's medians method [32] two tensile monotonic properties are needed to predict fatigue parameters this make them easy to apply. Roessle- fatemi method requires only hardness and modulus of elasticity make it the most convenient prediction method.

Park and Song [33], evaluated systematically all the methods proposed until 1995 using published data on 138 different materials. Figure 24 shows the prediction capability for each estimation method, it is clearly shown that the modified universal slopes method provides the best estimates.

Figure 24 Comparison of Predicted and Experimental Fatigue Lives for low-alloy Steel **[18]**

Estimation Method	$\sigma_{\rm f}^{'}$	έf	b	с
Morrow (1964)	-	-	$\frac{-n'}{1+5n'}$	$\frac{-1}{1+5n'}$
Manson's Universal Slopes (1965)	1.9Su	$0.76[ln\left(\frac{1}{1-RA}\right)^{0.6}$	-0.12	-0.6
Manson's four- point (1965)	$1.25\sigma_f(2)^b$	$\frac{0.125}{20^c} [ln \left(\frac{1}{1-RA}\right)^{3/4}$	$\frac{\log\left(0.36Su/\sigma_{f}\right)}{5.6}$	$(.33) log \frac{[0.0066 - \sigma_f (2x10^4)^b}{0.239E \left[ln \left(\frac{1}{1 - RA} \right) \right]^{3/4}}$
Rask-Morrow (1969)	-	$0.002 \left(\frac{\sigma_f'}{S_y'}\right)^{1/n'}$	-	-
Mitchell (Steel, 1977)	Su+345 MPa	$\epsilon_{ m f}$	$(167)log\left(\frac{0.5Su}{Su+345}\right)$	-0.6(ductile) or -0.5 (strong)
Muralidharan- Manson (1988)	$0.632E\left(\frac{S_u}{E}\right)^{.832}$	$0.0196\varepsilon'_f \left(\frac{S_u}{E}\right)^{-0.53}$	-0.09	-0.56
Baumel-Seeger (Steels,1990)	$1.5\left(\frac{S_u}{E}\right)$	$\begin{array}{c} 0.59 \text{ if } S_{u}\!/\!E \leq 0.003 \\ 0.812\text{-}74S_{u}\!/\!E \end{array}$	-0.087	58
Baumel-Seeger (Al and Ti,1990)	1.67S _u	0.35	-0.95	-0.69
Ong (1993)	$S_u(1+\epsilon_f)$	٤ _f	$\frac{1}{6} log \frac{{\binom{S_u}{E}}^{0.81}}{6.25 \sigma_{\rm f}/_{E}}$	$\frac{1}{4} log \frac{0.0074 - \frac{\sigma_f'(10^4)^b}{E}}{2.074\varepsilon_f}$
Roessle-Fatemi (2000)	4.25HB+225 MPa	[0.32HB ² - 487HB+191000]/E	-0.09	-0.56
Medians (Steel,2002)	$1.5\left(\frac{S_u}{E}\right)$	0.45	-0.09	-0.59
Medians (AL, 2002)	1.9S _u	0.28	-0.11	-0.66
Modified Mitchell (2003)	$\frac{S_u + 335}{E}$	ε _f	$-\frac{1}{6}\left(\frac{S_u+335}{0.446S_u}\right)$	-0.664

Table 2 Estimation Methods for Coffin-Manson's Parameters

Seven estimation methods, i.e. Manson's original 4- points correlation method, universal slopes method, modified universal slopes method, Mitchell's method, modified 4-point correlation method, modified Mitchell's method and uniform materials law method were evaluated by Jeon and Song [34], this study leads to a conclusion that the modified universal slopes method provides the best results for steels and modified Mitchell's method, for aluminum and titanium alloys. As these two modified methods require both ultimate tensile strength S_u and fracture ductility ε_f data, they also reported that when the fracture ductility ε_f is not available, the uniform material law may be utilized as an alternative to obtain estimation results [18].

Kim et al. [35] used eight steels to evaluate seven different prediction methods, Manson's original 4- points correlation method and universal slopes method, modified universal slopes method, Mitchell's method, modified 4-point correlation method and, uniform materials law method and Roessle-Fatemi's hardness method, concluded that modified universal slopes method, the uniform materials law and Roessle-fatemi's hardness method provide good results.

Maggiolaro and Castro [32] proposed medians method and compared with seven other prediction methods, the evaluation is based on the prediction ratio ($N_{predicted}/N_{observed}$), they concluded that the medians method provides better results and reasonable results are obtained from modified universal slopes method and Roessle-Fatemi hardness method, Figure 25, shows the average life prediction ratio for each estimation method with the strain amplitude levels between 1.2% to 5%.

Figure 25, Average Prediction Ratio versus Strain Amplitude [32]

Kwang-Soo Lee and Ji-Ho Song [18] stated in their study that, for steel, it is the best to use the modified universal slopes method with experimentally obtained ultimate tensile strength S_u and fracture ductility ε_f , also they ranked the estimated methods as shown in Table 3.

Motorial group	Ranking					
Material group	1	2	3	4		
Unalloyed steels	Modified universal slopes method	Roessle-Fatemi's direct hardness method	Uniform material law			
Low-alloy steels	Modified universal slopes method	Roessle-Fatemi's direct hardness method	Indirect hardness method of (Mitchell's hardness method + medians method)	Medians method		
High alloy steels	Modified universal slopes method	Medians method	Roessle-Fatemi's direct hardness method			
Aluminum alloys	Medians method	Indirect hardness method of (Roessle- Fatemi's hardness + medians method)	Uniform material law			
Titanium alloys	Modified Mitchell's method	Uniform material law	Indirect hardness method of (hardness method proposed + uniform material law			

Table 3 Ranking of Estimation Methods in Total Predictability for each Material Group [18]

Based on the above literature search, it can be concluded that for steels, the modified universal slopes method has the best prediction capability among the other prediction methods.

For aluminum and titanium alloys the Medians and Modified Mitchell's method are the most applicable methods.

2.1.4 Commonly Used Notch Stress-Strain Models

The models frequently used for notch stress-strain calculations are linear rule, Neuber's rule, and Glinka's rule. These rules can be used only when the nominal stress is below the elastic limit of the material which is the case for most components and structures designed to resist fatigue failure.

2.1.4.1 Linear rule

This rule is based on the assumption that both stress and strain concentration factors are the same as shown in Eq. (38)

$$\sigma = K_t S \quad , \quad \varepsilon = K_\varepsilon e = K_t e \tag{38}$$

Stephens et al. [1], stated that the linear rule is applicable for plane strain situations.

2.1.4.2 Neuber's Rule

Neuber [36], proposed the theory of notch stress for prismatic body subjected to a pure shear loading as:

$$K_{\varepsilon}K_{\sigma} = K_t^2 \tag{39}$$

$$\varepsilon\sigma = K_t^2 eS \tag{40}$$

When the elastic strain e replaced by S/E, and ε replaced by Eq. (2), the Neuber's rule for nominally elastic behavior becomes:

$$\frac{S^2 K_t^2}{E} = \frac{\sigma^2}{E} + \sigma \left(\frac{\sigma}{K}\right)^{\frac{1}{n}}$$
(41)

To find the notch stress the above equation can be solved using iterative or numerical schemes.

Figure 26 Determination of Monotonic Notch Strain using Neuber's Rule

Topper et al. (1969), **[37]** extended Neuber's rule to fatigue problems, the monotonic properties are replaced by the equivalent fatigue properties and Eq. (41) is modified as:

$$\frac{\Delta S^2 K_t^2}{E} = \frac{\Delta \sigma^2}{E} + 2\Delta \sigma \left(\frac{\Delta \sigma}{2K'}\right)^{\frac{1}{n'}}$$
(42)

Figure 26 shows the determination of notch stress-strain using Neuber's rule. Figure 27 represents the cyclic local stress-strain determination. Based on published studies in the literature, Neuber's rule predicts a conservative estimates of local strain compared to experimental data.

Figure 27 Cyclic Notch Stress-Strain Determination for Constant Amplitude using Neuber's Rule.

Most of studies show that Neuber's rule provides good estimation for thin sheets and plates "plane stress", and gives a conservative results under plane strain conditions [38], [39] and [40], the reason for the conservative nature of Neuber's rule was investigated and partially explained by Tipton [41], according to this study the multiaxial notch stress state constrains plastic flow and thus resists straining along load direction.

Under cyclic loads, the state of stress at the notch is assumed to be uniaxial. This is only true when the specimen thickness is small relative to the notch radius, in this case the notch root material freely contracts in the transverse direction. The opposite is true for the plane

strain condition. In such cases the transverse contractions are restricted. Hence the uniaxial stress-strain curve cannot be used in a biaxial condition at the notch tip.

Dowling et al. [42] (1977), proposed a transformation procedure from uniaxial to a biaxial condition by applying Hooke's law and von Mises's criterion for the elastic and plastic terms in the stress and strain relationship. Dowling, suggested the following simplified transformation equations to translate the uniaxial cyclic stress-strain curve ($\sigma_a - \varepsilon_a$) into a biaxial "plane-strain" relation σ_{1a} - ε_{1a} , Eq. (43),(44),(45)and (46)

$$\sigma_{1a}' = \frac{\sigma_a}{\sqrt{1 - \mu + \mu^2}} \tag{43}$$

$$\varepsilon_{1a}' = \frac{\varepsilon_a (1 - \mu^2)}{\sqrt{1 - \mu + \mu^2}}$$
(44)

$$\mu = \frac{\nu + \frac{E\varepsilon_{pa}}{2\sigma_a}}{1 + \frac{E\varepsilon_{pa}}{\sigma_a}}$$
(45)

$$\varepsilon_a = \frac{\sigma_a}{E} + \varepsilon_{pa} \tag{46}$$

2.1.4.3 Glinka's Rule

This method was proposed by Molski and Glinka [43] (1981), using the strain energy approach, it is based on the assumption that when the plastic yielding at the notch tip is small in this case it is controlled by the surrounding elastic stress field and the energy density distribution for the plastic zone is the same for linear elastic materials. The proposed model has the form:

$$\frac{S^2 K_t^2}{E} = \frac{\sigma^2}{E} + \frac{2\sigma}{n+1} \left(\frac{\sigma}{K}\right)^{1/n} \tag{47}$$

The only difference with Neuber's rule is the term 2/(n+1), since this term is greater than unity a lower σ value is needed to satisfy the equation which means that this method gives a lower notch stress value as compared to Neuber's method.

Glinka [44], modified Eq. (47) by introducing a factor, C_p based on the fact that when stress redistribution occurs in the area neighboring the notch tip, the plastic zone expand to reach an equilibrium condition, in this case Eq. (47), should be multiplied by the correction factor C_p and is given by:

$$C_p = 1 + \frac{\Delta r_p}{r_p} \tag{48}$$

Where r_p , is the plastic zone size and Δr_p is the increment of plastic zone growth. The value of C_p ranges from 1 to 2.

The modified Glinka's method is proposed in Eq. (49):

$$C_p \frac{S^2 K_t^2}{E} = \frac{\sigma^2}{E} + \frac{2\sigma}{n+1} \left(\frac{\sigma}{K}\right)^{1/n}$$
(49)

Based on a studies conducted on Glinka's local stress-strain prediction, results in a conclusion that, it is a non-conservative method (it gives lower strain than the actual).

Hoffman and Seeger part 1 and 2 (1985), [45], [46] extended the well-known uniaxial notch stresses to multiaxial stress states which requires two steps: First, a relationship between applied load and equivalent stress and strain is established. Neuber's rule is chosen, replacing the uniaxial quantities σ , ε and Kt by equivalent quantities σ_q , ε_q and K_{tq} using von Mises yield criterion. In the second step, the principal stresses and strains at the notch root are correlated to the equivalent quantities σ_q , ε_q obtained from the first step as:

$$\varepsilon_q = \frac{\sigma_a}{E} F\left(\frac{\sigma_{e,q}}{\sigma_q}\right) \quad 1 \le \frac{\sigma_{e,q}}{\sigma_q} < K_p$$
(50)

Where, ε_q and σ_a denote the equivalent notch strain and stress, respectively. K_p , is defined as the limit load factor and defined as the ratio of the load producing cross section yielding to the yield initiation load. F, is defined as the geometry correction factor.

The assumption is that the principal stress directions remain unchanged during loading which is satisfied under the condition of symmetry and approximate for other cases of proportional loading. In this case Henky's equation is used by assuming that the strain component in one direction is a function of a strain component in a mutually normal direction. The proposed method is comparable to Dowling's method [42], the difference is in formulating the approximation formulas. In Dowling's method it is written in terms of maximum stress σ_1 and strain ϵ_1 instead of the equivalent quantities σ_q , ϵ_q . In the second part of Hofmann and Seeger paper [46], the proposed method is applied on a round bar with a circumferentia notch under tensile load and a thick-walled cylinder under internal pressure. A comparison of the results with an elasto-palstic finite element analysis produced a maximum deviation of 30 percent. The method proposed an estimation for stresses and strains under proportional loading condition, they used different steps to estimate multiaxial notch stresses and strains. 1) Definition of material stress-strain curve $\sigma = g(\varepsilon)$ and selection of Von Mises as a yield criterion. 2) Definition of the elastic material constants and principal stresses σ_{el} , σ_{e2} , and principal stress directions. 3) Estimation of plastic limit stress, S_p for elastic perfectly-plastic material. 4) Calculation of the theoretical elastic equivalent notch stress σ_q based on Von Mises and computation of K_{tq} . 5) Use of Neuber's rule as an approximation formula. 6) Application of notched element boundary conditions, fixed principal stress direction and constant strain ratio. 7) Calculation of stress and strain components. This method is based on istotropic hardening rule which fails to represent the Bauschinger effect.

James et al. [47], (1989) proposed a numerical approximation method for calculating plastic notch stress and strains. The method ignores the compatibility condition and uses the total deformation theory of plasticity. It starts with the analytical elastic stress and strain

43

distribution for hyperbolic notches and predicts elastic stress and strain distributions for semicircular and U-shaped notches. The results were compared with a plane stress finite element analysis, it showed that the notch root strains were underestimated by (20-30) percent.

The Gowhari-Anaraki and Hardy [48], (1991) prediction method is a modified Neuber's method for multi-axial states. This is accomplished by substituting either the equivalent or meridional stress and strain into the Neuber's equation as:

1. Based on equivalent stress and strain:

$$\Delta \sigma_{eq} \Delta \varepsilon_{eq}^1 = K_{teq}^2 \Delta \sigma_a \Delta \varepsilon_a \tag{51}$$

Where: the subscripts, a and eq are nominal and equivalent respectively.

2. Based on the meridional stress and strain:

$$K_{\sigma m}K_{\varepsilon m} = K_{tm}^2 \frac{E}{E_{eff}}$$
(52)

Where: E_{eff} and m, are the effective modulus of elasticity of the notch and meridional respectively.

A study was conducted by Sharp et. al. [49], (1992) using finite element analysis and a laser based technique to measure the biaxial strains. The results compared with results obtained using Neuber's and Glink's methods; and led to the conclusion that, Neuber's method gives a reasonable prediction under plane stress condition and Glink's rule works best for plane strain conditions.

Tashkinov and Filatov [50], (1993) proposed an improved energy density method for inelastic notch tip strain calculations using a partial power approximation of the stress-strain curve of the material. The plastic zone correction factor C_p , in Glink's rule could be expressed explicitly.in this approximation, the stress-strain curve is expressed as:

$$S = S_{y}\left(\frac{\varepsilon}{\varepsilon_{y}}\right) \text{ for } S \leq S_{y} \text{ and } S = S_{y}\left(\frac{\varepsilon}{\varepsilon_{y}}\right)^{m} \text{ for } S > S_{y}$$
(53)

Where ε_y the yield strain and m is a material constant. The technique is extended to the generalized strain and axisymmetric conditions for which the energy postulate of the energy density method is modified. A scheme for analysis has been proposed for the case of nominal plastic yield. The results have been compared with the finite element method and experimental data.

Lee et al. [51] (1995), proposed an estimation techniques for multiaxial notch stresses and strains on the bases of elastic stress solutions. This technique utilizes a two-surface model with the Morz hardening equation and the associated flow rule to simulate the local notch stress and strain responses for any geometrical constrains of the specimens under monotonic behavior for in-phase out-of phase loading. The uniaxial material properties associated with the two-surface model are determined by the Neuber's rule, Glink's rule and FEA results. The results obtained were compared with elasto-plastic FEA and experimental results. Reasonable correlation was found between the measured and predicted notch strains for SAE 1045 material. The elastic stress versus strain relation proposed by Lee et al., can be summarized as:

- Determine the uniaxial elastic stress versus true strain relation by Neuber's rule or Glink's energy density method.
- 2. Estimation of material parameters K' and n' by fitting the stress strain curve.
- 3. Calculate deviatoric stress vector by:

$$\overline{ds} = \overline{d\sigma} - \frac{1}{3} \left(\overline{d\alpha} * \overline{I} \right) \tag{54}$$

Where, $d\sigma$, $d\alpha$, and \bar{I} denotes the stress incremental tensor, the change of back stress position center and is the unit tensor respectively.

4. Calculate hardening modulus as:

$$H = \frac{2}{3}K'n' \left[\frac{2(\sigma_{yc}^{L} - \sigma_{yc})(D-1) + \sigma_{yc}^{L}}{K'} \right]^{\frac{n'-1}{n'}}$$
(55)

Where, D, σ_{yc}^{L} , are the normalized distance from has value from 0 to 1 and the limit surfaces.

5. Calculate plastic strain increments as:

$$\bar{d}\varepsilon^p = \frac{3}{2H\sigma_{yc}^2}(\bar{s}-\bar{\alpha})\big[(\bar{s}-\bar{\alpha})*\bar{d}s\big]$$
(56)

6. Calculate elastic strain increments as:

$$\bar{d}\varepsilon^{e} = \frac{1+\nu}{E} \Big[\bar{d}\sigma - \frac{\nu}{1+\nu} \big(\bar{d}\sigma * \bar{I} \big) \bar{I} \Big]$$
(57)

7. Calculate total strain increments as:

$$\bar{d}\varepsilon' = \bar{d}\varepsilon^e + \bar{d}\varepsilon^p \tag{58}$$

8. Determine the back stress by

$$\bar{d}\alpha = \frac{(\bar{S} - \bar{\alpha}) * \bar{d}s}{(\bar{S} - \bar{\alpha}) * [\bar{S}(\sigma_{yc}^L - \sigma_{yc}) - \bar{\alpha}\sigma_{yc}^L]} [\bar{S}(\sigma_{yc}^L - \sigma_{yc}) - \bar{\alpha}\sigma_{yc}^L]$$
(59)

Buczynski and Glinka [52], (1995) proposed their analytical method to calculate the notchtip stresses and strains in elastic-plastic bodies subjected to non-proportional loading sequences. It is based on the axis invariant incremental relationship between elastic and elastic-plastic strain energy density at the notch tip. This method appears to be suitable for fatigue life analysis of notch bodies subjected to multiaxial cyclic loading paths.

Z. Zeng and A. Fatemi [53], (2000) investigated the stress and strain behaviour at notch root under monotonic and cyclic loading, the results obtained from Neuber's rule, Glink's rule where compared with elasto-plastic finite element analysis results. The results show that the Glink's rule is suitable for calculating notch root strain and stress amplitudes of a notched components, where the notch is under either a plane stress or plane strain condition. Neuber's rule may only be suitable for calculating notch root strain and stress amplitudes of an applitudes of notched component, where the notch stress state is plane stress.

Stevan Maksimovic [54], (2005) proposed method that combined Neuber's and finite element method with strain-life criterions in order to accurately predict fatigue crack initiation life and then establish an estimated schadual of fatigue life. The local strain obtained using the equivalent stress strain relationship as:

$$\Delta \sigma_{eq} \Delta \varepsilon_{eq} = \frac{K_t^2 \Delta S_{eq}^2}{E} \tag{60}$$

Where, $\Delta \sigma_{eq}$ and $\Delta \varepsilon_{eq}$ are equivalent stress and strain ranges respectively.

The fatigue life is calculated as:

$$\frac{\Delta\varepsilon_{eq}}{2} = \frac{\sigma_f' - \sigma_m}{E} \left(2N_f\right)^b + \varepsilon_f' \left(2N_f\right)^C \tag{61}$$

Where, σ_m is the mean stress.

L. Samuelsson [55], (2008) used titanium alloy "Ti6-4" in a study and proposed a prediction method based on a correlation between linear FEA and Neuber's rule estimation solution with assumption of a linear relationship between the linear and nonlinear notch root stress and strain solutions as:

$$\sigma_{corr} = \sigma_n + (m-1) * (\sigma_l - \sigma_n)$$
(62)

$$\varepsilon_{corr} = \varepsilon_n + (m-1) * (\varepsilon_l - \varepsilon_n) \tag{63}$$

Where, σ_n , ε_n are Neuber's stress and strain respectively

 σ_l, ε_l are the stress and strain obtained using the linear rule.

m = 1 represent the Neuber's rule.

m = 2 represent the linear rule.

1 < m < 2 represent a linear interpolation between the Neuber's rule and the linear rule.

Tanweer et al. [56], (2012) developed a method to predict large elastic-plastic notch stress and strains, for materials with power-hardening law. The proposed method is implemented within simple structures with combination of limit load S_p and elastic stress concentration factor. The method can be summarized as:

$$\sigma_{eq} = \left[(1-n)\frac{\sigma_y}{S_p} + nK_{tq} \right] S \tag{64}$$

$$\varepsilon_{eq} = \left[\frac{(1-n)\frac{\sigma_y}{S_p} + nK_{tq}}{K} \right] S^{\frac{1}{n}}$$
(65)

Where, σ_y , K_{tq} , are the yield stress and equivalent stress concentration factor respectively.

2.2 PLASTICITY

The adjective "plastic" originally comes from a Greek word means "to shape". Metals undergoes a permanent shape change when plastically deformed.

To understand plasticity it is convenient to split the stress tensor into two parts, one called a hydrostatic or spherical stress and the other is deviatoric stress tensor. The hydrostatic stress is responsible for material volume change, on the other hand the deviatoric stress causes the shape change. The hydrostatic stress can be expressed by a general form as P_{ij} whose elements are given by $\sigma_m \delta_{ij}$ where σ_m is the mean stress, Eq. (66) and [57]

$$P_{ij} = \sigma_m \delta_{ij} = \begin{bmatrix} \sigma_m & 0 & 0\\ 0 & \sigma_m & 0\\ 0 & 0 & \sigma_m \end{bmatrix}$$
(66)

$$\sigma_m = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} \tag{67}$$

Experimental work on metal alloys reveals that the effect of hydrostatic stress is insignificant and can be neglected. In plastic flow considerations only the difference between the stress tensor and hydrostatic stress is important Eq. (68) and [57]:

$$S_{ij} = \sigma_{ij} - P_{ij} = \sigma_{ij} - \sigma_m \delta_{ij} = \begin{bmatrix} \sigma_x - \sigma_m & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y - \sigma_m & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z - \sigma_m \end{bmatrix}$$
(68)

Yielding has to be considered as a yield surface, the yield surface is defined in a stress space as a convex surface separate elastic and elastic-plastic regions. Outside this surface the material exhibit a permanent deformation "plastic deformation" where at any stress value within or lower represent a reversal behavior "elastic condition". When a metal alloy has been loaded beyond the yield surface and plasticity occurred unloaded followed by reload it yields at a higher value, in other word the yield surface grows in a positive

49

direction, this behavior called material hardening. In general there are two types of hardening, isotropic and kinematic hardening.

Plastic deformation due to cyclic loading is the major factor during fatigue damage process. Therefore, an understanding of multi cyclic plastic deformation is essential specially when there is significant plastic deformation as in notches. Plastic deformation theory consists of the following basic elements:

- 1. A yield criteria to define the initiation of plastic flow.
- 2. A flow rule which relates the applied load increments to the corresponding plastic strain increments after plastic flow has initiated.
- 3. A hardening rule which describes the change in yield surface with plastic strains.

2.2.1 Failure Theories

2.2.1.1 Von Mises

Failure and fracture of material have two different meanings, for design purposes it is assumed that if the material starts yielding it will not serve the intended purpose. The current terminology is related to yielding rather than failure theories. The most famous yield theory used in finite element packages is Von Mises criteria or distortion energy theory. The Von Mises theory describes the multi-axial stress state at a point in a body in one stress value called equivalent stress " σ_e ", which can be compared with a uniaxial yield stress value.

In order to understand the bases of Von Mises theory it is conventional to define the magnitude of the principal stresses value at a point **P** Figure 28, where the stress vector **T** is normal to a plane passing through point **P**, in other word, a plane or planes where the shear stress is absent. These planes are called principal planes, [57].

Figure 28 Planes Passing through Point P in a body under Applied Surface Forces.

This can be written mathematically:

i

الم للاستشارات

$$T_i = \sigma n_i \tag{69}$$

Where, T_i is a stress vector, σ is the magnitude of the stress vector which is totally normal to a plane whose normal is defined by n_i .

Eq. (69) can be expressed in terms of indicial notation as:

$$\sigma_{ji}n_i = \sigma n_i \tag{70}$$

 σ , is an eigen value of stress tensor σ_{ji} , and represent the value of principal stresses. Eq. (70) can be written such as Eq. (71)

$$\sigma_{ji}n_j = \sigma \delta_{ij}n_j \tag{71}$$

Where δ_{ij} , is a mathematical operator called kronecar delta. Rearranging of Eq. (71) gives the form below:

$$\left(\sigma_{ij} - \sigma\delta_{ij}\right)n_j = 0\tag{72}$$

The non-trivial solution of the above equation can be obtained as:

$$det(\sigma_{ji} - \sigma I) = 0 \tag{73}$$

The result will be a cubic equation such as, Eq. (74):

$$\sigma^3 - I_1 \sigma^2 - I_2 \sigma - I_3 = 0 \tag{74}$$

Where, I_1 , I_2 and I_3 called invariant which they are independent of planes. The value of each invariant is expressed mathematically as:

$$I_1 = \sigma_{ii} \tag{75}$$

$$I_2 = \frac{1}{2} \left(\sigma_{ij} \sigma_{ij} - I_1^2 \right)$$
(76)

$$I_3 = det[\sigma] \tag{77}$$

The roots of the Eq. (74), σ_1 , σ_2 and σ_3 represent the values of principal stresses. The eigen vectors are the principal planes which they are orthogonal.

Von Mises stated that the stress tensor can be composed additively into two parts, a hydrostatic stress tensor responsible for volume change and deviatoric stress tensor responsible for distortion as.

$$\sigma_{ij} = \begin{bmatrix} P & 0 & 0 \\ 0 & P & 0 \\ 0 & 0 & P \end{bmatrix} + \begin{bmatrix} (\sigma_{11} - P) & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & (\sigma_{22} - P) & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & (\sigma_{33} - P) \end{bmatrix}$$
(78)

$$\left[\sigma_{ij}\right] = \left[P\right] \qquad + \qquad \left[S_{ij}\right] \tag{79}$$

Where, P and S_{ij} are the hydrostatic and deviatoric stress tensors respectively. For metals, experimental studies reveals that the hydrostatic part is not significant, and can be neglected. The second part has invariants named $J_1, J_2, and J_3$. These invariants can be obtained using the same analogy of the pervious process as:

$$J_1 = I_1 = 0 (80)$$

$$J_2 = \frac{1}{2} \left(S_{ij} S_{ij} \right) \tag{81}$$

$$J_3 = det[\sigma] \tag{82}$$

Yielding is independent of coordinate system, it is a function of J_2 and J_3 . It has been found experimentally that J_3 is insignificant for metals.

Metals starts yielding when J_2 reaches a critical value k^2 which is related to the uniaxial yield stress σ_y .

For uniaxial load stress can be expressed in Eq. (83) as:

$$[\sigma] = \begin{bmatrix} \sigma & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$
(83)

The hydrostatic stress part is the mean value:

$$P = \frac{\sigma}{3} \tag{84}$$

The deviatoric stress is defined in Eq. (85) as:

$$[S] = \begin{bmatrix} \sigma - \sigma/3 & 0 & 0\\ 0 & -\sigma/3 & 0\\ 0 & 0 & -\sigma/3 \end{bmatrix}$$
(85)

$$J_2 = K^2 \tag{86}$$

$$J_2 = \frac{1}{2} \left(S_{ij} S_{ij} \right) \tag{87}$$

Substitution and simplification of Eq. (85),(86) and (87) gives:

$$J_2 = \frac{1}{2} \left(S_{11}^2 + S_{22}^2 + S_{33}^2 \right) \tag{88}$$

$$=\frac{1}{2}\left[\left(\sigma - \frac{\sigma}{3}\right)^2 + \left(-\frac{\sigma}{3}\right)^2 + \left(-\frac{\sigma}{3}\right)^2\right] = \frac{1}{3}\sigma^2 \tag{89}$$

Yielding occurs in a uniaxial case when stress reaches σ_y , so each stress value σ is substituted by σ_y . In this case the multiaxial condition can be compared with a uniaxial case as in Eq. (90) and (91):

$$J_2 = K^2 = \frac{1}{3}\sigma_y^2 \tag{90}$$

$$K = \frac{1}{\sqrt{3}}\sigma_y \tag{91}$$

The Von Mises stress can be rewritten as:

$$\sqrt{J_2} = \frac{\sigma_y}{\sqrt{3}} \tag{92}$$

$$\sqrt{\frac{3}{2}S_{ij}S_{ij}} = \sigma_y = \sigma_e \tag{93}$$

Where σ_e is called equivalent stress. Yielding occurs when equivalent stress σ_e exceed the uniaxial yield point σ_y . σ_e can be expressed in stress tensor components as [58]:

$$\sigma_e = \sqrt{\frac{1}{2}(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)}$$
(94)

Von Mises yield criterion is the most commonly used for metals, it is visualized in three dimensional stress space as a circular cylinder. In the case of unyielded material the axis of the cylinder passes through the origin of the coordenates. It lies at equal amounts to the three coordinate axes and represents pure hydrostatic stress (i.e, $\sigma_1 = \sigma_2 = \sigma_3$).

2.2.1.2 Maximum Shear Stress Theory (Tresca)

Tresca theory define yielding as a condition when the maximum shear stress at a point reach the same value of maximum shear stress at yield in a uniaxial tension given by.

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} = \frac{\sigma_{max} - \sigma_{min}}{2} \tag{95}$$

Figure 29 shows graphically the shape of the Von Mises's and Tresca's yield surfaces, Tresca yield theory is considered to be more conservative than Von Mises [59].

Figure 29 Von Mises/Tresca Yield Surfaces in Principal Stress Coordinates [59].

Eq. (94) is a general from of Von Mises equation, it can be reduced based of the loading condition. In case of uniaxial loading condition, $\sigma_{11} \neq 0$, $\sigma_{22} = \sigma_{33} = 0$, Eq.(62) can be reduced to a simple from to:

$$\sigma_1 = \sigma_e \tag{96}$$

Table 4 summarizes Von Mises equation for different stress conditions

ruble i builling of von hinses criterion at Different buess condition	Fable 4 Summar	y of Von	Mises	Criterion	at Different	Stress	Condition
---	----------------	----------	-------	-----------	--------------	--------	-----------

Load	Restrictions	Corresponding Von Mises equation
General	No	$\sigma_e = \sqrt{\frac{1}{2}(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)}$
Principal stress	$\sigma_{12} = \sigma_{13} = \sigma_{23} = 0$	$\sigma_e = \sqrt{\frac{1}{2}(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}$
Plane stress	$\sigma_3 = 0$ $\sigma_{12} = \sigma_{13} = \sigma_{23} = 0$	$\sigma_e = \sqrt{\sigma_1^2 - \sigma_1\sigma_2 + \sigma_2^2 + 3\sigma_{12}^2}$
Pricipal plane stress	$\sigma_3 = 0$ $\sigma_{12} = \sigma_{13} = \sigma_{23} = 0$	$\sigma_e = \sqrt{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2}$
Pure shear	$\sigma_1 = \sigma_2 = \sigma_3 = 0$ $\sigma_{13} = \sigma_{23} = 0$	$\sigma_e = \sqrt{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2}$
Uniaxial	$\sigma_2 = \sigma_3 = 0$ $\sigma_{12} = \sigma_{13} = \sigma_{23} = 0$	$\sigma_e = \sigma_1$

2.2.2 Isotropic and Kinematic Hardening

When a solid material is plastically deformed by exceeding the elastic limit and then unloaded followed by reloading it does not yield at the same previous load level, since a plastic flow resistance has been induced in the material. This behavior called "strain hardening"

Usually in finite element materials model, two approaches are used; isotropic hardening and kinematic hardening.

2.2.2.1 Isotropic Hardening

Isotropic hardening occurs when a plastic material is loaded in tension past its yield stress which is followed by a compressive load does not yield until it reaches the same load level in tension. In other word, when the yield stress increases due to hardening the compression yield stress grows by the same value.

The yield surface grows in size but the origin does not move. As shown in Figure 30. This type of hardening is unusual in metallic materials.

Figure 30 Schematic Representation of Isotropic Hardening "same shape, different size"

2.2.2.2 Kinematic Hardening

In kinematic hardening the material yields in compression at a lower level than the tension yield stress level, (it follows the Bauschinger effect). In reality most metals exhibit kinematic hardening and some isotropic hardening. Figure 31 shows schematically the kinematic hardening behavior. Figure 32 shows the difference between isotropic and kinematic hardening when the material is subjected to cyclic loading condition.

It is convenient to describe some existing hardening models, along with their advantages and drawback.

Figure 31 Kinematic Hardening Representation "same shape, same size"

Figure 32 Isotropic and Kinematic Hardening under Cyclic Loading

2.2.2.3 Prager Rule

Prager [60] (1955), introduced the term "kinematic hardening" and proposed the first kinematic hardening model. As described earlier in kinematic hardening the assumption is that during plastic loading the yield surface translate in stress space without a change in shape or size. This behavior predicts the Bauschinger effect in uniaxial tension and compression.

When the initial yield surface described by:

$$F = f(\sigma) - k = 0 \tag{97}$$

So, due to the kinematic hardening the subsequent yield surface takes the form of:

$$f(\sigma - \alpha) - k = 0 \tag{98}$$

Where α , is a hardening parameter that is called back stress. The back stress represent the center of the yield surface in the stress space; *k*, is a material property that is related to the size of the yield surface. As α , changes due to plastic strain hardening, the yield surface translate in the stress space without a change in initial shape or size. Prager proposed a linear equation for the back stress α , as:

$$d\alpha = Cd\varepsilon^p \tag{99}$$

Where C is a material constant derived from the monotonic uniaxial curve. This model states that the yield surface retains its initial shape and size and moves in the direction of strain increment with the direction of normal to the yield surface that is defined by Eq. (100):

$$d\alpha = C\dot{\lambda}\frac{\partial F}{\partial\sigma} \tag{100}$$

Where $\dot{\lambda}$, is the proportional positive scalar factor, and is determined using the yield criterion.

2.2.2.4 Armstrong and Frederick

Armstrong and Frederick (1966) proposed a model which simulates the multiaxial Bauschinger effect [61]. When compared to experimental results the model exhibits better accuracy than Prager's model. It is based on the assumption that the most recent part of the strain history of material effects the mechanical behavior. Armstrong-Frederick added a memory term to the Prager's rule as in Eq. (101):

$$d\alpha = \frac{2}{3}Cd\varepsilon_p - \gamma\alpha dp \tag{101}$$

61

Where C and γ are material parameters, dp, is an increment of accumulated plastic strain given by Eq. (102):

$$dp = \sqrt{\frac{2d\varepsilon_p : d\varepsilon_p}{3}} \tag{102}$$

2.2.2.5 Mroz Model

The kinematic hardening rule commonly used in fatigue is the Mroz kinematic hardening rule. Mroz [62, 63], (1967, 1969), proposed a multi-surface model by defining a field of different plastic modulus in the stress space in order to obtain a better approximation of the stress-strain curve and generalize the plastic modulus in multiaxial case. During plastic loading, the stress surfaces are activated subsequently and move until the stress point meets the next stress inactive stress surface. When the stress point meets a stress surface, this surface active. By increasing the load, the active surface and entire, previously activated surface (inner surface) move together until unloading occurs. To define the movement direction of active stress surface, the steps in the non-proportional loading are as follow:

1. Find a similar point on the next surface that has the same normal vector as the current normal vector.

$$S_{ij}^* = \frac{R_{k+1}}{R_k} (S_{ij} - a_{ij}) + a_{ij}^{k+1}$$
(103)

Where:

- a) S_{ij}^* , is the point of the next stress surface.
- b) R, stress value at the end of ith surface.
- c) a_{ij} , tensor of yield surface.
- d) k, plastic tangent modulus.
- 2. Determine the direction of the center of active surface.

$$da_{ij}^k = d\eta \left(S_{ij}^* - S_{ij} \right) \tag{104}$$

Where: η , is normal vector on the active yield surface.

Other inner surfaces, 1 < k < k - 1, need to be in touch with the active surface during plastic loading. In this case, the back stress of the other internal defined as:

$$a_{ij}^r = S_{ij} - \sqrt{\frac{2}{3}} R_r n_{ij}, \quad 1 < r < k - 1$$
(105)

2.2.2.6 Garud

Garud [64], (1981), noticed that there is a possibility of intersection of Mroz model yield surfaces under certain loadings, therefore, Garud proposed a modified Mroz model to prevent such intersection. Movement of the surfaces in Garud's model is dependent on the stress direction. The following steps are needed to determine the Garud model:

1. Find the normal vector on the next surface

$$n_{ij}^{B} = \sqrt{\frac{3}{2}} \frac{S_{ij}^{B} - a_{ij}^{k+1}}{R_{k+1}}$$
(106)

2. Find the stress point on the next inactive surface.

$$S_{ij}^* = \sqrt{\frac{2}{3}} R_k n_{ij}^* + a_{ij}^k \tag{107}$$

3. Determine the direction of the center of active surface.

$$da_{ij}^k = d\eta \left(S_{ij}^B - S_{ij}^* \right) \tag{108}$$

Chu [65], (1984), proposed an infinite surface model that does not require a discrete number of surfaces. Chu's model only requires position and radius for the current active surface.

2.2.2.7 Wang and Ohno

The model proposed by Wang and Ohno (1991), [66] Eq. (109) is based on the nonlinear kinematic hardening rule of Armstrong-Frederick [61], the model demonstrates the effect of two terms, temperature and reliable translation.

$$dp^{(i)} = H(f_i) \langle d\varepsilon_p : \frac{a^{(i)}}{\bar{a}_i} \rangle$$
(109)

Where $\bar{a}_i = \sqrt{\frac{3}{2}a^{(i)}:a^{(i)}}$, $f_i = \bar{a}_i^2 - \left(\frac{c_i}{\gamma_i}\right)^2$ and $H(f_i)$ denotes Heavyside step function. On (1993) Wang and Ohno [67] proposed another model given by Eq. (110):

$$dp^{(i)} = \left(\frac{\bar{a}_i}{C_i/\gamma_i}\right)^{m_i} \langle d\varepsilon_p : \frac{a^{(i)}}{\bar{a}_i} \rangle \tag{110}$$

2.2.2.8 Chaboche

The yield function for nonlinear kinematic hardening model is expressed in Eq. (111) as:

$$F = \sqrt{\frac{3}{2} \left(S_{ij} - \alpha_{ij} \right) \cdot \left(S_{ij} - \alpha_{ij} \right)} - \sigma_y \tag{111}$$

Where S_{ij} is the deviatoric stress, α_{ij} refers to the back stress and σ_y is the yield stress obtained from the yield surface.

According to Chaboche model [68] the back stress α can be calculated using Eq. (112),(113) as:

$$\{\alpha\} = \sum_{i=1}^{n} \{\alpha_i\} \tag{112}$$

$$\{\Delta\alpha\}_i = \frac{2}{3}C_i\{\Delta\varepsilon^{pl}\} - \gamma_i\{\alpha_i\}\Delta\hat{\varepsilon}^{pl} + \frac{1}{C_i}\frac{dC_i}{d\theta}\Delta\theta\{\alpha_i\}$$
(113)

Where $\hat{\varepsilon}^{pl}$ is the accumulated plastic strain, θ is temperature, C_i and γ_i are the Chaboche material parameters for n number of pairs, (back stress versus plastic strain).

2.2.2.9 Initial Hardening Modulus

When n=1, C_1 represent the initial hardening modulus. If γ_i is set to zero, in this case the parameter C_1 represent the slope of stress versus equivalent plastic strain. This is called linear kinematic hardening model as shown in Figure 33 and Figure 34.

It should be noted that there is a difference between the tangent modulus E_{tan} which is based on the relationship between stress and total strain and C_1 obtained using equivalent plastic strain. There is a relationship between the two expressions given by:

$$E_{tan} = \frac{\sigma - \sigma_y}{\frac{\sigma - \sigma_y}{C_1} + \frac{\sigma}{E_{elastic}} - \frac{\sigma_y}{E_{elastic}}}$$
(114)

Figure 33 Schematic Representation of Linear Kinematic Hardening

Figure 34 Stress-Strain Behavior of Linear Kinematic Hardening Model.

2.2.2.10 Nonlinear Recall Parameters

The other material parameter in Chaboche model is γ_i , which indicates the rate of hardening decreases with increasing plastic strain. The Chaboche back stress in Eq. (113) indicates that the back stress increment lowers as plastic strain gets higher. C_i/γ_i refers to a limiting value where the yield surface cannot translate anymore. For a non-zero γ_1 parameter, the hardening modulus starts with same value as the linear kinematic hardening and keep decreasing until it reaches zero value at a high plastic strain value, this is known as the limiting or asymptotic value. This behavior is schematically represented in Figure 35 and Figure 36.

Figure 35 Small Strain

Figure 36 High Strain

2.2.2.11 Multiple Kinematic Hardening Models

In some cases the single nonlinear kinematic hardening model described by two material parameters, C_1 and γ_1 is not sufficient to describe the complex response of a given material. In this situation *n* can be increased to a higher value, most finite element packages use *n* values up to 5, which corresponds to γ_1 , γ_2 , γ_3 , γ_4 , γ_5 and C_1 , C_2 , C_3 , C_4 , C_5 . Figure 37 shows a comparison of three results of stress versus plastic strain as:

- 1. Case I, represent linear kinematic hardening.
- 2. Case II, single nonlinear kinematic.
- 3. Case III, two material parameters nonlinear kinematic hardening.

Figure 37 Effect of Kinematic Hardening Parameters Numbers

2.2.3 Identification of Parameter

The most challenging issue for researchers and designers is to identify the constants associated with any proposed material model and obtain better estimation of these parameters. The identification procedure for the material constants that describe the backstress evolution equation is based on experimental data results. Stabilized cycle behaviors is usually used for this purpose. If limited test data are available, C and γ can be estimated from the stress – strain data obtained from half cycle uniaxial tension or compression experiments as shown in Figure 38.

Figure 38 Half Cycle of Stress-Strain Data

For each data point $(\sigma_1 \varepsilon_i^{pl})$ a value of α_i (α_i is the overall backstress obtained by summing all the backstresses at this data point) is obtained from the test data as in Eq.(115):

$$\alpha_i = \sigma_i - \sigma_i^0 \tag{115}$$

Where, σ_i^0 is the yield surface size defined by the user at the corresponding plastic strain for the isotropic hardening component or the initial yield stress if the isotropic hardening component is not defined.

Integration of the backstress evolution laws over a half cycle leads to the expressions given by Eq. (116) :

$$\alpha_i = \frac{C}{\gamma} \left(1 - e^{-\gamma \varepsilon^{pl}} \right) \tag{116}$$

Which is used for calibrating C and γ .

According to Chaboche approach the material parameters C_i and γ_i can be obtained from the tension- compression stabilized hysteresis loops which correspond to different strain amplitudes. A numerical or graphical method can be used in this case. The method can be summarized in five steps as follow:

- 1. Determine the yield stress from the elastic domain which is usually the half of elastic domain size.
- 2. Determine the plastic strain range $\Delta \varepsilon^{pl}$.
- 3. Determine the stress range $\Delta \sigma$.
- 4. Estimate the asymptotic value of C_i/γ_i by plotting $(\Delta\sigma/2 \sigma_y)$ against $(\Delta\varepsilon^{pl}/2)$.
- 5. Using the expression $\frac{\Delta \sigma}{2} \sigma_y = \frac{C_i}{\gamma_i} tanh(\gamma_i \Delta \varepsilon^{pl}/2)$, using curve fitting to determine C_i and γ_i .

Graphical representation of the above steps are shown in Figure 39.

Figure 39 Identification of Coefficients C and γ from Three Tension-Compression Cycles of Different Strain Amplitudes.

2.2.4 Combined Kinematic-Isotropic Hardening Model

In practice the real plastic behavior for metallic materials does not purely follow the nonlinear kinematic hardening model, the yield surface not only translate but has both behaviors translation and expantion, in this case the isotropic behavior should be included. To reach a maximum accuracy a combined model is used which is a combination of nonlinear kinematic and nonlinear isotropic hardening model. The plastic strain increment is decomposed into two components as in Eq. (117):

$$d\varepsilon_{ij}^p = d\varepsilon_{ij}^i + d\varepsilon_{ij}^k \tag{117}$$

Where $d\varepsilon_{ij}^i$ and $d\varepsilon_{ij}^k$ refers to isotropic expansion and kinematic translation of the yield surface respectively. When the temperature term is omitted, the model takes the form for each backstress:

$$\dot{\alpha}_{k} = C_{k} \frac{1}{\sigma_{0}} (\sigma - \alpha) \varepsilon^{pl} - \gamma_{k} \alpha_{k} \varepsilon^{pl}$$
(118)

Where σ_0 defines the size of the yield surface.

2.2.5 Multiaxial State of Stress

Multiaxial states of stress and strain cannot be avoided in most engineering applications, for example:

- 1. In a tensile bar the state of strain is triaxial.
- 2. In most shafts the state of stress is biaxial.
- 3. For a thin-walled pressure vessel subjected to cyclic pressure the state of stress is biaxial.

Usually the state of stress in notches is multiaxial and it is not the same as the main body. The state of stress-strain at the root of bolt is biaxial but the state at the main body may be uniaxial.

The state of stress and strain at arbitrary point in the body can be described using six stress components (σ_x , σ_y , σ_z , τ_{xy} , τ_{xz} , τ_{yz}) and six strain components (ε_x , ε_y , ε_z , γ_{xy} , γ_{xz} , γ_{yz}) acting on orthogonal planes x, y, and z. defining stress or strain at any other direction can be done by using transformation equations or in some cases graphically by using Mohr's circle. In fatigue there are important magnitudes and directions where maximum stress and strains developed and failure can be expected:

- Maximum normal principal stress, σ₁.
- Maximum shear stress, τ_{max} .
- Maximum octahedral shear stress, τ_{oct} .
- Maximum normal principal strain, ε₁.
- Maximum shear strain, γ_{max} .
- Maximum octahedral shear strain,γ_{oct}.

2.2.6 Finite Element Analysis

Finite element method recently becomes a powerful technique for numerical solution of many engineering problems. With the aid of advanced computer technology and CAD

systems a complex structures can be modeled and analyzed. In automotive industry this technique is used mainly for elastic-plastic analysis of structures. A constitutive model is employed to capture the material response "stress and strain" at each integration point called local integration. Structural response is the product or a combination of all local integration points it is called global integration. Local and global integrations are carried out simultaneously. The level of accuracy for structural solution mainly relies on the accuracy of calculations at the local integration points. In finite element the model body is divided into an equivalent system of many smaller units "finite elements" interconnected to points common to two or more elements "nodes" [69] Figure 40.

Figure 40 Some Types of Elements in ABAQUS

3 STATEMENT OF PROBLEM AND THEORY

3.1 The Strain-Life Prediction Model

The original form of Universal Slopes Equation was proposed by Manson and Hirschberg in 1965 Eq. (119), [27] as:

$$\Delta \varepsilon = 3.5 \frac{\sigma_u}{E} \left(N_f \right)^{-0.12} + \left[\frac{N_f}{D} \right]^{-0.6}$$
(119)

Where $\Delta \varepsilon = \text{total strain range}$

 N_f = fatigue life

D = ductility

 σ_u = ultimate tensile strength

The slopes of elastic and plastic lines were universalized as -0.12 and -0.6 for all materials. U. Muralidharan and Manson [30], modified Eq. (119) and proposed the Modified Universal slopes equation. Their work started with a general form as shown in Eq. (120):

$$\Delta \varepsilon = A_1 D^{\alpha_1} \left[\frac{\sigma_u}{E} \right]^{\beta_1} \left(N_f \right)^{\gamma_1} + A_2 D^{\alpha_2} \left[\frac{\sigma_u}{E} \right]^{\beta_2} \left(N_f \right)^{\gamma_2}$$
(120)

 γ_1 and γ_2 exponents are assumed to be constant for all materials. The coefficients are generalized and allowed to be power functions of ductility (D), ultimate tensile strength σ_u and modulus of elasticity (E), for both elastic and plastic components. Optimization for the constants by the least squares method using 47 different materials results in the final form of Modified Universal Slopes method shown in Eq. (121).

$$\frac{\Delta\varepsilon}{2} = 0.623 \left(\frac{\sigma_u}{E}\right)^{0.832} \left(N_f\right)^{-0.09} + 0.0196 \left(\varepsilon_f\right)^{0.155} \left(\frac{\sigma_u}{E}\right)^{-0.53} \left(2N_f\right)^{-0.56}$$
(121)

The above study showed that the effect of ductility (D) on the elastic line is negligible, so it is eliminated from the elastic part of Eq. (119). For the plastic component the effect of ductility become less important and the exponent reduced from 0.6 to 0.155. It was found

that the ratio $\left(\frac{\sigma_u}{E}\right)$ has a high effect on both elastic and plastic components. The universal slopes which were -0.6 and -0.12 have become -0.53 and -0.09 respectively.

3.1.1 Objectives

One of the objectives of this thesis is to develop a prediction model that predicts cyclic deformation properties using Brinell hardness HB, the reason being that hardness test is a nondestructive test and hence easy to obtain. Hence it is advantages to use Brinell hardness (HB) instead of ultimate tensile (S_u) strength in Modified Universal Slopes method with optimization of the coefficients. Out of several estimation methods the Modified Universal Slopes method Eq. (121) was selected based on estimation studies made on the existing prediction methods which show that this model is the most recommended for prediction of fatigue life of steels. The Modified Universal Slopes model predicts cyclic properties based on ultimate tensile strength (σ_u), modulus of elasticity (E) and fracture ductility (ε_f). Since ultimate tensile strength strongly correlates to brinell hardness, "Roessel and Fatemi" proposed a correlation model with $R^2 = 0.96$ [15]. Hence, it is possible to use an estimated value of ultimate tensile strength from Brinell hardness in the Modified Universal Slopes method. The first stage in this study was to find a high correlation model similar to Roessel-Fatemi model between Brinell hardness and ultimate tensile strength, and then this value will be substituted in the Modified Universal Slopes method. The constants where then optimized using experimental data. In this case the fatigue parameters were predicted using Brinell hardness (HB), modulus of elasticity (E) and fracture ductility (ε_f).

The true fracture ductility (ε_f) still undesirable term in the model because it is not always available in the data, however, it was stated in the previous section that the effect of this term has less importance than indicated by the earlier Universal Slopes equation [27]. In general this term ranges from 0.15 to 1.5 for steels; and the value of (ε_f^{155}) ranges from 0.75 to 1.02 with an average value of 0.9, this term still needs further investigations, so that it can be replaced by an approximate constant value.

To validate the proposed method it was compared with the original method Eq. (108) and experimental data values, different data sources including low, medium, and high strength

steels were used. Matlab was used to solve for the number of cycles to failure for each strain amplitude value.

3.2 Notch Strain Prediction Models.

Eq. (121) can be used for a smooth specimen where the differences between the nominal and local stresses and strains are negligible, however, in case of notched components which are most common the differences are significant, in this case the local strain amplitude has to be predicted. One of the objectives of this study was to create a notch root stress-strain prediction model based on using a combination of elastic finite element analysis and Neuber's prediction method Eq. (42).

The aim is to simplify the notch root predictions by introducing an alternative method which rely on a linear finite element analysis which is accurate and easy to conduct with the aid of Neuber's analytical method, this saves time and cost compared with an expensive and time consuming elasto-plastic finite element analysis where the definition of materials constants is a challenge. The proposed model was compared with elastic-plastic finite element analysis. The elastic and elasto-plastic was obtained using ABAQUS 6.13 software, and the materials cyclic properties experimental data sources used in ABAQUS elasto-plastic analysis are:

- American Iron and Steel Institute (AISI) [24]
- Metals data for cyclic loading [16]

3.2.1 Notch Geometry

To investigate the cyclic loading behavior two different geometries were used. A double notched plate geometry with a notch depth of 6.35 mm and notch radius of 2.778 mm to create the plane stress condition and a round bar with a grove of radius 1.588 mm notch radius to create the plane strain condition. Figure 41.shows the two geometric configurations used in this study, where (a) represent the plane stress condition and (b) reflect the plane strain condition

Figure 41 Notched Configurations (a) Notched Plate with 2.77 mm Radius (b) Circumference Notched Round bar with 1.588 mm Radius

4 PERFORMING PREDICTION METHODS

4.1 **Perform fatigue properties estimation model**

As mentioned earlier, Park and Song [33] compared different approaches of prediction fatigue life using monotonic tensile properties. Three methods have been compared, the Modified Universal Slopes, Seeger's, and Ong's method, the three methods give reasonably good life predictions. Among them, the Modified Universal Slopes method gives the best results. Consequently, the Modified Universal Slopes method can be recommended as one of the best estimation methods that are currently available [70].

The Modified Universal Slopes method proposed by Muraliharan and Manson [30] predicts fatigue properties using ultimate tensile strength (S_u), true fracture ductility (ϵ_f) and modulus of elasticity (E), and is given by Eq. (121)

In this method fatigue strength exponent b and fatigue ductility exponent c, are approximated by a constant of values -0.09 and -0.56 respectively.

4.1.1 Correlations Among Tensile Data

As stated earlier, it is desirable to estimate fatigue properties of materials from material properties that are quick and easy to obtain, with a reasonable degree of accuracy, such as hardness and ultimate tensile strength.

The well-known approximation of the ultimate tensile strength, S_u from Brinell hardness, HB, for low and medium strength carbon and alloy steel is presented by a linear relationship given by Eq. (23)

Eq. (23) agrees well with experimental data for HB < 350, [14]. A nonlinear approach proposed by Roessle and Fatemi, correlates S_u and hardness using fatigue properties of 20 steels commonly used in the ground vehicle industry as follow [15]:

$$S_u = 0.0012(HB)^2 + 3.3(HB) (MPa)$$
(122)

In this study, an extensive data from 246 various steels selected from the American Society for Metals (ASM) reference book [71] was used. The materials used cover the ultimate

tensile strength values range from (386 to 2034) MPa and Brinell hardness range from (111 to 555) MPa, this range covers most of steels used in automotive industry, part of these data is shown in Table 5, the rest is tabulated in appendix A. Different nonlinear functions been used in order to reach the best correlation between Brinell hardness HB and ultimate tensile strength S_u . A least squares fit results in an exponential relationship as:

$$S_u = 320e^{0.0036HB}$$
 MPa (123)
Where, HB is the Brinell hardness in MPa.

An extensive application of Eq. (123) on each experimental data shows that it is need to be modified to enhance the accuracy. Many modified equations has been produced and the most accurate one has the following form:

$$S_u = \{410\langle (exp(0.00155HB))^{2.1} \rangle - 150\} (MPa)$$
(124)

Eq. (124), was applied on 246 different steels to predict the ultimate tensile strength from Brinell hardness HB, the results are compared with Roessle-Fatemi's prediction method. Also the ratios of (predicted/experimental) ultimate tensile strength values are calculated.

The produced data from proposed as well as Roessle-Fatemi's methods are compared with experimental data, part of the produced results were shown in Table 5, the rest of data is shown in appendix A. The closest the (predicted S_u /experimental S_u) ratio to one the better prediction capability, the ratio of one is the optimum value.

Number	AISI	Treat. Temp. C ⁰	HB	Su (Exp.)	Su (Prop.)	Su (Prop.)/Su (Exp.)	Su(R-F)	Su (R-F)/Su (Exp.)
1	1015		126	420	468	1.11	435	1.04
2	1015	925	121	424	458	1.08	417	0.98
3	1015	870	111	386	438	1.14	381	0.99
4	1020		143	448	503	1.12	496	1.11
5	1020	870	131	441	478	1.08	453	1.03
6	1020	870	111	394	438	1.11	381	0.97
7	1022	925	143	482	503	1.04	496	1.03
8	1022	870	137	429	490	1.14	475	1.11
9	1030		179	551	584	1.06	629	1.14
10	1030	845	126	463	468	1.01	435	0.94
11	1040		201	620	639	1.03	712	1.15
12	1040	900	170	589	563	0.96	596	1.01
13	1040	790	149	518	516	1.00	518	1.00
14	1050		229	723	714	0.99	819	1.13
15	1050	900	217	748	681	0.91	773	1.03
16	1050	790	187	636	604	0.95	659	1.04
17	1060		241	813	749	0.92	865	1.06
18	1060	790	179	625	584	0.93	629	1.01
19	1080		293	965	914	0.95	1070	1.11
20	1080	900	293	1010	914	0.91	1070	1.06

Table 5 Ultimate Tensile Strength Values Obtained from Proposed Method and Rossel-
Fatemi Compared with Experimental Data

To validate the proposed relationship a qualitative as well as a quantitative analysis were conducted, the results were compared with the best model in the literature. Evaluation of estimation methods for strain-life fatigue properties from hardness conducted by Kwang-Soo Lee at al., reveals that among 4 existing methods for estimating ultimate tensile strength from hardness, the Roessle-Fatemi's method Eq. (122) provides the most reasonable estimation results. Figure 42 shows a plot of predicted versus experimental ultimate tensile strength values using proposed method in Eq. (124) together with Roessel-Fatemi's correlation Eq. (122). In Figure 43, the ratio of estimated/experimental ultimate tensile strength plotted versus the Brinell hardness HB, where the dashed lines indicate a factor of \pm 10% scatter band.

Eq. (124) covers a range of hardness from, 150 (HB) to 550 (HB) and with ultimate tensile strength that range from 386 (MPa) to 2034 (MPa).

Figure 42 Predicted vs Experimental Ultimate Tensile Strength

Figure 43 Estimated, Experimental Data Ratio versus Brinell Hardness (HB)

The results obtained in Figure 42 and Figure 43 are useful for evaluating the S_u – HB estimation methods, but give only qualitative information. For quantitative evaluation the following three terms; error criterion, mean value and coefficient of variance were used.

$$E_{f_{(s=10\%)}} = \frac{Number \ of \ data \ falling \ within \ 0.9 \le \frac{(S_u)_{Pred.}}{(S_u)_{Exp.}} \le 1.1}{Number \ of \ total \ data}$$
(125)

Mean value = Mean of
$$\frac{(\sigma_{Prop.})}{(\sigma_{Exp.})}$$
 (126)

$$CV (Coefficient of variance) = \frac{Standard deviation}{Mean}$$
(127)

 E_f is the error criterion which is usually used to evaluate the estimation methods. It is evaluates the accuracy of estimation in terms of fraction of data that falls within a scatter band of a specified factor **S**. The mean value of data is employed as additional value because the error criterion E_f is not enough to evaluate the deviation of data value from the optimum value of $\frac{(\sigma_{Prop.})}{(\sigma_{Exp.})} = 1$. The coefficient of variance is another measure of normalized scatter. The closer the E_f is to 1, the better the estimation and it is true for the other two items, the mean and coefficient of variance.

$$E_{mean} = 1 - |1 - mean|$$
 (128)

$$E_{CV} = 1 - |CV| \tag{129}$$

By assuming that the three evaluation values are equally important, the total evaluation is made using the mean values of E values defined as:

$$\bar{E} = \frac{E_f + E_{mean} + E_{CV}}{3} \tag{130}$$

www.manaraa.com

Table 6 shows the comparisons of estimation methods in terms of evaluation values described.

E values	Proposed method	Roessle-Fatemi
<i>E</i> _{<i>f</i>(<i>s</i>=10%)}	0.882	0.695
E _{mean}	0.98	0.917
E _{CV}	0.927	0.942
\overline{E}	0.931	0.852

Table 6 Estimated Ultimate Tensile Strength Quantitative Analysis

As mentioned in the earlier the fatigue material parameters as predicted in Modified Universal Slopes Method using ultimate tensile strength, modulus of elasticity and true fracture ductility are obtained using the Eq. (131) and (132).

$$\sigma_{f(M)}' = .623E \left(\frac{S_u}{E}\right)^{.832}$$
(131)

$$\varepsilon'_{f(M)} = .0196 (\varepsilon_f)^{0.155} \left(\frac{S_u}{E}\right)^{-.53}$$
 (132)

Where $\sigma'_{f(M)}$ and $\varepsilon'_{f(M)}$ are the fatigue strength coefficient and fatigue ductility coefficient respectively.

In this study, Brinell hardness is used instead of ultimate tensile strength based on the correlation proposed in Eq. (124). The optimization of the coefficients after substitution of ultimate tensile strength by Brinell hardness in Eq. (131) and Eq. (132) results in a new prediction model in equations Eq. (133), (134).

$$\sigma'_{f(p)} = 28.74(E) \left(\frac{[4.1(exp(.00155HB))^{2.1} - 1.5]}{E} \right)^{.832}$$
(133)

$$\varepsilon'_{f(p)} = .0017 (\varepsilon_f)^{.155} \left[\frac{[4.1(exp(.00155HB))^{2.1} - 1.5]}{E} \right]^{-.53}$$
(134)

Where $\sigma'_{f(p)}$ and $\varepsilon'_{f(p)}$ are the proposed method fatigue strength coefficient and fatigue ductility coefficient respectively.

The final form of the proposed method is provided in Eq. (135)

$$\frac{\Delta\varepsilon}{2} = 28.74 \left(\frac{[4.1(\exp(.00155 * HB))^{2.1} - 1.5]}{E} \right)^{.832} (2N_f)^{-.09} + .0017 (\varepsilon_f)^{.155} \left(\frac{[4.1(\exp(.00155 * HB))^{2.1} - 1.5]}{E} \right)^{-.53} (2N_f)^{-.56}$$
(135)

The new approach eliminates ultimate tensile strength from the original model, where it replaced by the Brinell hardness. Hardness can be measured nondestructively even for inservice component, but measuring ultimate tensile strength is a destructive testing that needs a prepared specimen. Based on the new model, fatigue parameters can now be predicted by knowing the hardness, the modulus of elasticity, and the true fracture ductility.

The true fracture ductility (ϵ_f) is still an undesirable term in this method because it is not always available in the data. According to (Meggiolaro, Castro) comprehensive study on the evaluation of the strain-life prediction methods, it is concluded that the correlation of (ϵ'_f) with monotonic cyclic properties is poor, it is recommended that this term is replaced with a constant value. In general this term ranges from 0.15 to 1.3 for steels; and the value of (ϵ_f)^{0.155} ranges from 0.75 to 1.02 with an average value of 0.9.

4.1.2 Evaluation of the Proposed Strain-Life Estimation Method.

4.1.2.1 Qualitative Evaluation

To evaluate the prediction capabilities of the proposed method given by Eq. (135), it is compared with the Modified Universal slopes method given by Eq. (121) and a real experimental fatigue data. 52 different steels including low, medium and high strength steels from different data sources including J1099, ASM, AISI and material data for cyclic

85

loading, were used, the constant amplitude fatigue tests were performed according to the ASTM Standard E606 [72]. These steels cover the cyclic hardening/softening characteristics, Brinell hardness ranges from 150 (HB) to 660 (HB), and the ultimate tensile strength is ranges from 300 to 2500 (MPa).

Strain amplitudes data obtained from strain-life curve for each material at fatigue lives that range from 10^3 to 10^6 reversals. Log strain amplitude of ($\Delta\epsilon/2$) is plotted versus log life to failure (2N_f) which results in strain-life curves for each material; this approach gives better results when compared to the original Modified Universal slopes method and real experimental fatigue data form literature, as observed in Figure 44 - Figure 47 the rest of graphs are shown in appendix A.

Figure 44 Comparison between Four Prediction Approaches for SAE 4140, HB409 Steel

Figure 45 Comparison between Four Prediction Approaches for SAE 1141, HB277 Steel

Figure 46 Comparison between Four Prediction Approaches for SAE 1070, HB280 Steel

Figure 47 Comparison Between four Prediction Approaches for SAE H-11, HB660 Steel

Figure 48 shows the predicted lives obtained using the proposed method and Universal slopes method compared with the experimental lives for a group of steels within a scatter band value of three, the same method was used in the literatures to validate the existing models. The nearest to the center line at value of 1, is the best prediction, all the evaluation measures to be here employed will be formulated to be unity for ideally good prediction. A group of steels were used in Figure 48 with different ultimate tensile strength values.

Figure 48 Comparison of the Predicted and Experimental Fatigue Lives for Different Alloys

4.1.2.2 Quantitative Evaluation

To evaluate the proposed estimation method on a quantitative basis, the most popular evaluation criteria proposed by Park and Song [33] were employed. This method is based on introducing three evaluation error criterion, E_f expressed in Eq. (136):

$$E_{f}(s) = \left[\frac{Number of data falling within \frac{1}{S} \le \left(\frac{N_{p}}{N_{f}}\right) \le S}{Number of total data}\right]$$
(136)

Where the value of S = 3 is employed for fatigue life prediction.

The second criteria used is the goodness-of-fit between the predicted and experimental values applying a least squares analysis. The goodness-of-fit-evaluation criteria is defined for both combined of all (ϵ -N) data sets and for individual (ϵ -N) data sets, separately as follow:

$$(E_a)_{total} = \frac{(1 - |\alpha_{total}|) + (1 - |1 - \beta_{total}|) + (1 - |1 - \alpha_{total} - \beta_{total}|) + (1 - |1 - r_{total}|)}{4}$$
(137)

$$(E_a)_{Dest} = \frac{1}{N} \sum_{i=1}^{N} (E_a)_i = \frac{1}{N} \sum_{i=1}^{N} \frac{(1 - |\alpha_i|) + (1 - |1 - \beta_i|) + (1 - |1 - \alpha_i - \beta_i|) + (1 - |1 - r_i|)}{4}$$
(138)

Where α and β are the values of the intercept and slope of a least-squares line,

$$\log(2N_p) = \alpha + \beta \log(2N_f)$$
(139)

and **r** is the correlation coefficient between the predicted and experimental lives, the subscripts, total and i, refers to the combined data of all (ϵ -N) data sets and ith (ϵ -N) data sets, respectively.

By assuming the above estimates are of equal importance, the final estimates is made by taking the average of the E values given by:

$$\bar{E} = \frac{E_f(S=3) + (E_a)_{total} + (E_a)_{Dest}}{3}$$
(140)

Table 7, shows the values obtained using the above estimation criteria, closer to one is the, better is the prediction model.

E values	Proposed method	Modified universal slopes method
$E_{f(s=3)}$	0.96	0.85
$(E_a)_{Dest}$	0.82	0.73
$(E_a)_{total}$	0.75	0.72
Ē	0.84	0.77

Table 7 Strain-Life Quantitative Analysis

4.2 The Notch Root Strain Prediction Model Technique

The finite element software used in this study was ABAQUS. Due to symmetry one-fourth of the plate was modelled using 2D- solid plane stress elements with input thickness Figure 49. The notched bar axisymmetric two dimensional model was used, Figure 51. To insure an optimum mesh size, the number of elements was increased until there was no significant change in strain at the notch root nodes see (Figure 50 and Figure 52). A far-field uniform tensile load was applied at the end of both notched plate and bar perpendicular to the notch surface. The elastic stress concentration factors, K_t, were obtained using FEA nonlinear analysis based on the net cross-sectional area. Elastic-plastic finite element analyses was conducted using the combined-hardening model. The combined hardening model is a combination of a non-linear kinematic and isotropic hardening model. This option is suitable for cyclic loading analysis taking into account the Bauschinger effect, the von Mises yield criterion with the associated flow rule in addition to kinematic hardening to compute the plastic strain increment. The input material cyclic properties for each material were taken from published experimental tests by AISI Bar Steel Fatigue Database and SAE J1099. K_t values are obtained by taking the ratio of stress amplitude at notch root to the nominal stress amplitude. Application of nominal stress amplitude smaller than 0.8Sy results in stress concentration factor of 2.73 and 1.78 for a notched plate and round bar respectively. Variable amplitude cyclic loadings used in this study to investigate the behavior of each material under tension-compression conditions: a maximum nominal stress of 350 MPa and minimum stress amplitude of -240 MPa was applied to a notched plate. In case of round bar the maximum and minimum nominal stress amplitudes were 500 MPa and -240 MPa respectively. These values were selected to ensure that sufficient plastic strain was generated at the notch root.

Figure 49 One-Fourth of Flat Plate Finite Element Model.

Figure 50 Mesh Configuration for the Area around Notched Plate.

Figure 51 Axisymmetric two Dimensional Model for Round Bar.

Figure 52 Mesh Distribution around the Round Bar Notch

4.2.1 Methodology

As mentioned earlier Neuber's rule is the most commonly used analytical method for notch root stress and strain predictions. However, studies conducted reveal that Neuber's rule overestimates these values compared to elasto-plastic finite element cyclic analysis. Neuber's rule is based on nonlinear equations (40),(41), a study of these two equations reveals that there are two material cyclic properties that contribute to the difference between the elasto-plastic finite element results and Neuber's predictions especially when the type of material is changed. It becomes to determine, which of these properties has the larger effect on this difference and how this difference changes by changing the type of material. So, does the change behaves in a linear, or nonlinear manner?

Based on Eq. (41), if the geometry factor K_t and nominal stress S are fixed then this equation can be written as in Eq. (141):

$$\Delta\sigma^{2} + 2\Delta\sigma E \left(\frac{\Delta\sigma}{2K'}\right)^{m} = (K_{t}\Delta S)^{2} = Constant$$
(141)

Where m=1/n'

The two materials properties that change by changing the type of steel are K' and m Each type of steel has a unique value of K' and m. the Young's modulus E stays almost constant for all steel types. Figure 53 shows the change of material stiffness with increasing the value of **m**, each curve expresses a cyclic stress-strain curve for a different steel, where m= 0, and $m= \infty$ define the perfectly plastic and perfectly elastic conditions respectively. The difference in result determined by using Neuber's and elasto-plastic finite element analysis notch root strain prediction method should be controlled by selection of K' and **m** values.

Figure 53 Cyclic Stress-Strain Curves for Different Steels

To know the effect of the two variables m & K' on the stress and strain estimates one of these variables has to be fixed while the other is varied.

For most steels K' can have a value between 900 - 2000 (MPa). In order to investigate the effect of **m** on the estimation of local strain values, the value of K' was fixed at 1500 (MPa) which corresponds to an average value for most steels. The exponent **m** was incrementally changed from 11.1 - 4.3 which corresponds to **n**' value range of 0.09 - 0.23, this range covers a majority of steels used in the industry. E, K_t, and S have values of 200 (GPa), 2.73 and 300 (MPa) respectively.

 $\delta\epsilon$ was defined as the notch strain amplitude difference between Neuber's and FEA elastoplastic solutions and $\delta\epsilon$ can be expressed as:

$$\delta_{\varepsilon} = \varepsilon_N - \varepsilon_{FEA} \tag{142}$$

Where, ε_N and ε_{FEA} are the Neuber's and elasto-plastic FEA notch root strain amplitude results respectively. Based on Eq. (142) if δ_{ε} can be predicted and the cyclic properties for

the material are known, it is easy to find ε_{FEA} which corresponds to the optimum notch root strain amplitude value, thus elasto-plastic finite elements analysis can be avoided. This is desired due to the complexity of the plastic deformation behavior, and the difficulty of defining materials parameters in the FEA software.

Eq. (142) can be written in the form:

$$\varepsilon_N - \delta_{\varepsilon} = \varepsilon_{FEA} \tag{143}$$

To predict δ_{ε} an elasto-plastic finite element analysis was conducted for n' values that range between 0.09 - 0.23 with an incremental increase of 0.1, and fixed values of E, K_t, and S.

This trial is conducted in order to know the effect of the n' values on the difference between Neuber's and FEA elasto-plastic estimates, the proposed prediction model will be based on this behavior.

To investigate the effect of increasing nominal applied stress, three different nominal stress amplitude levels were used, 250, 300, 350 (MPa) at the same n' range specified above. In the final step the effect of K' was investigated at three different values 900, 1400, 1500 (MPa) with a value of **m** equal 6.02 which represent a mean value for most steels. Maximum nominal stress amplitude used is 350 MPa which corresponds to nearly 1000 MPa notch stress, since most of the targeted steels have ultimate tensile strength below 1000 MPa (K_t * S_{max}) =2.73 * 350 = 955 (MPa)).

4.2.2 Developing a Prediction Method.

The change of δ_{ε} with reciprocal cyclic hardening exponent **m** is shown in Figure 54, the values of δ_{ε} in y-axis are multiplied to 10^6 just to make them visible. It is clear that the relationship of the equation that describes the change in the prediction error δ_{ε} , and **m** is a power relationship. Based on curve fitting, different power law equations were obtained. The curve that has the optimal power relation for different nominal stress values is presented in Eq. (144). The equation obtained from Figure 54, has the form:

$$y = A(m)^{\beta} \tag{144}$$

Eq. (144) was applied on a range of steels, and a the correction error was calculated for each steel using elasto-plastic finite element analysis and calculated strains using Neuber's rule, the prediction error data was used to optimize the values of A and β . The optimal value was 0.015 for A and -2.019 and β , as shown in Eq. (145).

$$\delta_{\varepsilon} = 0.015(m)^{-2.019} \tag{145}$$

Eq. (145) is a correction factor that depends on (m = 1/n'), which can be subtracted from Neuber's notch strain to get the optimum strain value that corresponds to the elasto-plastic finite element analysis given by Eq. (146).

$$\varepsilon_N - 0.015(m)^{-2.019} = \varepsilon_{FEA}$$
 (146)

Figure 54 Variation of $\delta\epsilon$ with Different m Values

Figure 55 Variation of δ with K'at Fixed Value of m & S

The same elasto-plastic FEA analysis is conducted by fixing **m** and changing K' with values specified earlier. Figure 55 shows the change of δ_{ε} with **K**['] for a fixed value of $S_a = 300$ (MPa) and **m** = **6**, in this case a linear trend is observed. Based on this behavior the value of K' is not included in Eq. (146) at this point it is assumed that the effect of K' is not significant and the proposed model is optimized to compensate for the effect of K'.

To increase the prediction capability of Eq. (146) the interpolation technique proposed by Calladine [73], was used Eq. (147); shown in Figure 56. Where; equation (12) in Figure 56 represents the best linear interpolation equation, and the curved dashed line represents the experimental or exact curve. F_m relys on the maximum stress developed at each corresponding **m** value. This scheme is employed for strain rate-independent prediction, and described by Eq.(147).

$$\varepsilon = \varepsilon_N + x(\varepsilon_{el} - \varepsilon_N) \tag{147}$$

Figure 56 Interpolation Assumption by Calladine [73]

Eq. (147) assumes that the variation of notch root strain and **m** is perfectly linear; however the relationship is not linear as shown in Figure 56. Combining Eq. (146) and Eq. (147) results in a model given by Eq. (148) which takes into account the nonlinear behavior.

$$\varepsilon = (\varepsilon_N - \delta_{\varepsilon}) + x[\varepsilon_{el} - (\varepsilon_N - \delta_{\varepsilon})]$$
(148)

Eq. (148) can be rearranged to give:

$$\varepsilon = (1 - x)(\varepsilon_N - \delta_{\varepsilon}) + x\varepsilon_{el} \tag{149}$$

Studies show that the optimum value for x is 0.35. The main advantage of Eq. (149) is that, the elasto-plastic finite element analysis can be avoided. Since linear finite element analysis using the proposed method provides closer results as elasto-plastic finite element analysis.

Local stress σ can be predicted using a direct linear interpolation between linear finite element and Neuber's rule solution using Eq. (150) where the values of strains are replaced with stresses and the value of x is replaced by 0.1 as:

$$\sigma = \sigma_N + x(\sigma_{el} - \sigma_N) \tag{150}$$

Where, σ_N and σ_{el} are the local stress obtained using Neuber's and the linear finite element analysis method respectively.

4.2.3 Evaluation of the Proposed Method

To validate the proposed model in Eq. (149) and (150) different steels were tested using two geometries, double notched flat plate and a circumference notched round bar. Elastic, elastic-plastic finite element and Neuber's rule prediction were used at two loading conditions. The results were compared with the proposed notch root prediction method. Applied conditions for different steels:

- I. Completely reversed applied loads, 2 nominal stress amplitudes are applied, 250 MPa, and 300 MPa on the following steels, 1020, 1541,1551V,1022,1141AL,1141Nb,1141V,1045,5150,9310,41B17,C-70 and 9262
- II. Completely reversed load from zero to 0.8 cyclic yield strength (MPa) applied on the following steels, RQC-100, SAE1045, SAE1050, and SAE1141MA.
- III. Variable amplitude where, a time history segment is used for each geometry, as shown in Figure 57. To investigate the behavior of each material under variable tension-compression conditions: a maximum nominal stress of 350 MPa and minimum stress amplitude of -240 MPa was applied to a notched plate. In case of the round bar the maximum and minimum nominal stress amplitudes were 500 MPa and -240 MPa. These values were selected to insure that sufficient plastic strain was generated at notch root.

The types of materials used in the evaluation are SAE1141V, RQC-100, SAE1038, SAE1050M, SAE1117, SAE15V24, SAE1141Nb, SAE1045, SAE1141, Al-2024-T350 including low strength, medium strength steels. Elastic and elasto-plastic finite element

analysis were carried out for each type of steel, maximum stresses and strains are recorded for the nodes at the notch root location.

Figure 57 Applied Nominal Stress for Different Geometries

5 RESULTS AND DISCUSSIONS

5.1 Ultimate Tensile Strength HB Correlation Model

Brinell hardness HB and ultimate tensile strength S_u correlation model was created using data on 246 different steels to create a fatigue life prediction model. The model was evaluated using qualitative as well as a quantitative criteria. Figure 42, Figure 43 show the prediction capability qualitatively, in Figure 42 the predicted ultimate tensile strength S_u is plotted versus the actual values. The other qualitative analysis is done comparing the most utilized method in industry, Roessel Fatemi's method, where the ratio of predicted and actual tensile strength is plotted versus the Brinell hardness HB. A count of the points falling in the scatter band of $\pm 10\%$ indicates that more points fall within the scatter band for the proposed model than for the Fatemi-Roessel model, as shown in Figure 43. The other criteria used to evaluate the proposed model are; error criterion, mean value and coefficient of variance, which is a quantitative statistical analysis described earlier, the average of the three \overline{E} values represent the goodness of the prediction model where the value of 1 represent the optimum value, the nearest to one is the best prediction, table 8 shows the \overline{E} value for proposed method is 0.931 compared with the value of 0.852 for the Roessel-Fatemi's model.

5.2 Strain-Life Prediction Proposed Method

The data proposed in Table 8 provides the fatigue parameters obtained from the proposed and Modified Universal Slopes prediction methods for 52 different materials; these values were compared with the experimental data from the sources mentioned above. Reference to the experimental data for each steel, proposed method provides better estimation for more than 92% of the proposed steels for fatigue strength coefficient (σ'_f) values, which represent the elastic coefficient in strain-life prediction model. The proposed method is not only based mainly on hardness of the material which is easy to obtain, but it also provides a better results compared with the modified universal slopes estimation method.

102

SAE Specificatio	n Brin Hard s (H	ell nes B)	Ten strei (M	nsile ngth Pa)	Exp &r).	σſ	Exp. (MPa)	(1	σ _f ' _(p) MPa)		σf'(M) (MPa)	F	lxp. εſ	ł	E f ['] (p)	3	f'(M)
A538A(b)	40	5	15	15	1.1			1655		1960		2116		0.3	(0.27	().25
A538B(b)	46	0	18	60	0.82	2		2135		2309		2510		0.8	(0.22	0).22
A538C(b)	480	0	20	00	0.81	l		2240		2437		2654		0.6	(0.21	().21
AM-350(c)	490	6	19	05	0.23	3		2690		2554		2548		0.1	(0.17	().17
RQC-100	290	0	94	40	0.56	5		1240		1401		1447	().66	(0.31	().31
1005-1009	12	5	47	70	1.09)		515		807		813		0.3		0.5	().51
1045	410	0	14	50	0.72	2		1860	1	2016		2067		0.6	(0.25	().25
1541F	290	0	95	50	0.68	3		1275		1401		1460	().68	(0.32	0).32
1541F	26	0	89	90	0.93	3		1275		1273		1383	().93	(0.35	().35
4130	25	8	89	95	1.12	2		1275		1280		1406	().92	(0.38	().37
4142	310	0	10	60	0.35	5		1450		1485		1593	(0.22	(0.27	().27
4142	380	0	14	15	0.66	5		1825		1850		2034	().45	(0.26	().26
4142	450	0	17	60	0.54	1		2000		2281		2439		0.4	(0.22	().22
4140	310	0	10	75	0.69)		1825		1485		1611		1.2	(0.31	().29
4340	243	3	82	25	0.57	7		1200		1195		1287	().45	(0.33	0).33
4340	409	9	14	70	0.48	3		2000		2010		2091	().48	(0.24	().24
4340	350	0	12	40	0.84	1		1655		1674		1807	().73	(0.28	().28
5160	430	0	16	70	0.87	7		1930		2131		2314		0.4	(0.24	().24
9262	410	0	15	65	0.38	3		1855	1	2016		2202	().38	(0.23	().23
H-11	66	0	25	85	0.4			3170	4	4180		3357	(0.08	(0.15	().17
950X(g)	150	<u> </u>	53	30	1.24	1		1005		900		898	().85	(0.46	().48
1141	22	3	77	71	0.85	5		1168		1139		1238	0	.257		0.4	().38
1141	2.4	1	80)2	0.77	7		1080		1209		1280	(0.36	(0.38	().37
1141	2.7	7	92	25	0.88	3		1127		1367		1453) 31		0.37	() 36
1141	2.5	2.	70	97	0.88	3		1162		1251		1272	(0.53	(0.38	().37
1038	18	5	64	52	0.76	5		1004		1005		1079		0.2		0.43	().41
1038	19	5	64	49	1.1			1009		1040		1075	(0.23	(0.44	().44
1541	19	5	9()6	0.54	1		1044		1028		1403) 51		0.38	() 32
1050(M)	20	5	82	21	0.68	3		989		1069		1299	() 43		0.4	() 35
1050(M)	220	0	82	29	0.42	2		1094		1116		1301		0.3	(0.35	().32
1090	2.5	9	10	90	0.14	5		1310		1267		1634	(0.25	(0.27	().23
SAE	Iter. #	Bri Ha ss (inell rdne (HB)	Ter stre (M	nsile ength IPa)	Exp Ef	p.	Exp. σf' (MPa	a)	σ _f ' _(p) (MPa)	σ _{f'(M} (MPa) .)	Exp. ε _f ′		εf'(p)	4	Ef'(M)
1070	36	2	80	6	59	0.5	5	1289		1359		1079		0.361		0.32		0.37
10B21	24	3	22	11	105	1.2	22	1284		1557		1664		0.69		0.34		0.33
1538	131	2	85	9	73	3.3	33	1355		1365		1474		0.8		0.29		0.27
15B35	45	2	86	9	40	0.1	1	1127		1398		1463		0.96		0.25		0.25
4130AL	29	4	42	14	182	0.6	6	2294		2242		2128		1.44		0.24		0.25
41B17	72	2	77	8	72	1.1	.3	1023		1353		1368		1.48		0.37		0.37
8620	119	3	26	9	91	0.7	6	1639		1576		1521		0.47		0.32		0.32
9254V	34	5	36	20)50	0.4	4	2914		2935		2771		4.17		0.19		0.2
41B17M	79	6	27	18	377	0.05	56	4712		3807		2572		0.34		0.12		0.15
4320	49	1	88	9	94	0.9	9	909		1002		1512		0.86		0.43		0.33
Man-Ten	-	1	50	9	72	1.1	7	972		885		960		0.85		0.46		0.4
AISI304	-	3	27	9	51	1.1	1	2275		1526		1430		0.89		0.3		0.28
18Ni	-	4	60	18	362	0.8	32	2137		2310		2550		0.8		0.23		0.21
AISI-310	-	1	45	6	41	0.7	'3	1655		860		1056	i	0.6		0.44		0.38
VAN-80	-	2	25	6	96	1.1	.3	1055		1125		1132	,	0.21		0.38		0.39
15B27 HT	-	2	.64	9	16	1.0	19	1062		1284		1430		1.68		0.36		0.34
S.S 304	-	3	27	9	51	1.1	6	2047		1526		1439		0.554		0.29		0.19

Table 8 Fatigue Parameters Obtained from the Proposed and Modified Universal Slopes Methods.

Figure 58 represent a plot between the experimental/predicted fatigue strength (σ'_f) ratios for the proposed and Modified Universal Slopes model.

The scattering of the proposed method was around 1 which is slightly lower than the results obtained using the Modified Universal Slopes method this means that the proposed method provides better prediction of the fatigue strength coefficient parameter as compared to the original method (Modified Universal Slopes Method)

Figure 59 shows the scattering of fatigue ductility coefficient (ε'_f) which represent the second fatigue parameter or the plastic coefficient in the model, it is clear that the predictability of this parameter is relatively poor for both models with slightly less scattering for the proposed method. This conclusion agrees with the results in the literatures. The literature also mentioned that the correlation between the fatigue ductility coefficient (ε'_f) and the monotonic tensile properties is poor for all currently existing prediction models

Figure 58 Actual/ Predicted Fatigue Strength Ratio vs Actual Values

Figure 59 Comparison of Predicted Fatigue Ductility Coefficient with Experimental Data

Figure 44 - Figure 47 show the strain –life curve for each prediction method for different steels, the proposed method curve appears to be closer to the experimental data curves, which means it gives better prediction values than the Modified Universal Slopes Method. The performance of proposed method tends to get closer to the experimental results at low cycle fatigue rather than a high cycle fatigue conditions, which is shown in Figure 72 - Figure 97, Appendix A.

For high strength material SAE H-11, with Su=2585 (MPa), the proposed method shows comparable prediction results, as shown in Figure 47.

Figure 48 shows a comparison between the experimental results and predicted lives obtained by the proposed method and Modified Universal slopes method within a scatter band of three, both methods give a good prediction capability by considering the number of points falling in the scatter band at relatively lower number of cycles below approximately 16000 cycles, at higher number of cycles above 20000 cycles the proposed method exhibit a lower scattering with a higher number of points falling within the range

of 3 scatter band. In design 20000 cycles is not a significant number, in most cases in design the objective is 10 times more than this number, this gives the proposed a significant advantage over the Modified Universal Slopes method.

The quantitative analysis criteria used for strain-life prediction is more complex than the criteria used for ultimate tensile strength Brinell hardness prediction, as described earlier.

Table 7 shows the comparison between the two methods, 20 different steels are employed, the \overline{E} values are 0.84 and 0.77 for proposed and Modified Universal Slopes method respectively, where closer to one is the best prediction.

5.3 Notch Root Prediction Model

Notch root strain amplitudes were calculated for each material under the specified loading condition with the aid of linear finite element analysis using Eq. (88), the results were compared with the elasto-plastic finite element analysis and Neuber's prediction.

Case I where the applied nominal stresses are 250, 300 MPa:

The results are shown in Table 9 for each material used within the test, the maximum strain values for proposed method has an advantage over the Neuber's prediction when the two methods were compared with the elasto-plastic maximum strain and stress results.

	Notched flat plate under S _a =250 (MPa)												
SAE	Neul	per's	Line	Linear FEA		-plastic EA	Propos	Proposed Method					
designation	σ_{max}	% (e _a)	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$					
1020	373	0.61	671	0.30	426	0.43	404	0.46					
1541	455	0.52	672	0.34	571	0.38	542	0.42					
1151V	475	0.48	672	0.32	632	0.35	505	0.38					
1022	397	0.59	670	0.33	479	0.42	431	0.46					
1141AL	452	0.48	671	0.31	572	0.35	515	0.37					
1141Nb	437	0.49	671	0.3	530	0.35	502	0.38					
1038	396	0.59	672	0.33	469	0.42	440	0.48					
	<u>.</u>	Not	ched fla	t plate under	$S_a = 300$ (1	MPa)		-					
SAE	E Neuber's		Line	Linear FEA		Elasto-plastic FEA		Proposed Method					
designation	σ_{max}	% (c _a)	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$					
1020	403	0.8	805	0.4	467	0.6	420	0.57					
1038	430	0.78	805	0.4	514	0.56	482	0.53					
1541	493	0.7	805	0.41	635	0.49	592	0.51					
1141Nb	470	0.63	806	0.37	577	0.47	525	0.43					
1151V	515	0.64	805	0.39	637	0.46	597	0.46					
1141V	508	0.62	805	0.37	625	0.45	580	0.447					
1045	500	0.65	805	0.38	626	0.47	577	0.48					
1022	428	0.79	805	0.4	522	0.57	503	0.56					
1141AL	491	0.64	805	0.37	634	0.44	595	0.44					
5150	545	0.59	806	0.38	692	0.43	625	0.44					
9310	625	0.55	805	0.37	749	0.47	691	0.48					
41B17	617	0.52	805	0.38	703	0.43	682	0.45					
C-70	599	0.56	805	0.4	754	0.43	700	0.45					
9262	575	0.57	804	0.38	732	0.43	670	0.45					

Table 9 Notch Root Stress-Strain for Flate Plate under Completely Reversed Cyclic Loading

- Case II, completely reversed load from zero to 0.8 cyclic yield strength (MPa), the maximum stress-strain results were listed in Table 10 to Table 13, and the plot of nominal stress versus the local maximum principal strain obtained from each prediction method shown in Figure 60 to Figure 67. All figures show that the gap between the proposed method and elasto-plastic finite element is very small compared with Neuber's FEA gap. For SAE1045 the proposed method exhibits principal strains below the estimated values for the flat plate geometry compared with FEA results as shown in Figure 62. In general the proposed method provide a reasonable estimation especially in the case of round bar geometry.
- Case III, variable amplitude ,this is the extreme condition where the mean stress become a factor, same analogues used by G. Glinka [44] where the notch strains plotted versus the number of reversals in order to show the difference between the prediction methods instead of using hysteresis loops. Figure 68 to Figure 71 show some snapshots obtained from ABAQUS viewer for strain amplitudes and the corresponding number of cycles to failure contours for each geometry, fe-safe [70] software was used to obtain the number of cycles to failure.

Morrow's mean stress method was used to predict the number of cycles to failure under each condition also shown in Table 15 to Table 23 appendix B. Figure 98 to Figure 133, appendix B show the maximum local strain at each reversal with the corresponding number of cycles to failure for each material, As shown in the Figures, the values of notch strains as well as the number of cycles obtained by the proposed method are closer to the elastoplastic finite element values especially under tensile nominal cyclic stress, under compression cycles all three methods are close. Notch strain amplitude values are generally lower in case of plane strain condition where the stress is in a multi-axial state.

Some hysteresis loops obtained by elasto-plastic finite element analysis show the local strain amplitudes with the corresponding notch root stress, for each reversal shown in Figure 134 to Figure 136.

108

	Notch root stress-strain for RQC-100 Steel flat plate												
Sa (MBa)	Neul	ber's	Line	Linear FEA		'lastic EA	Proposed						
(MPa)	σ_{max}	% (e _a)	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$					
0	0	0	0	0	0	0	0	0					
50	137	0.066	133	0.064	133	0.064	137	0.047					
100	273	0.133	267	0.128	269	0.128	272	0.113					
150	409	0.21	404	0.195	404	0.195	409	0.186					
200	496	0.29	538	0.259	538	0.259	500	0.261					
250	564	0.398	671	0.323	612	0.349	575	0.353					
300	613	0.52	809	0.39	638	0.456	633	0.456					
350	653	0.67	942	0.454	661	0.565	682	0.576					
400	685	0.836	1076	0.518	707	0.701	724	0.706					
450	713	0.102	1210	0.583	735	0.847	763	0.849					
500	737	1.21	1343	0.647	761	1.000	798	0.995					

	Notch root stress-strain for RQC-100 Steel round bar												
Sa (MBa)	Neul	per's	Line	ear FEA	E- P F	'lastic EA	Proposed						
(MPa)	σ_{max}	% (€a)	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$					
0	0	0	0	0	0	0	0	0					
50	90	0.0396	90	0.037	90	0.037	90	0.018					
100	179	0.0789	180	0.073	180	0.073	179	0.056					
150	268	0.118	271	0.110	271	0.110	268	0.095					
200	355	0.158	358	0.145	358	0.145	355	0.133					
250	438	0.201	444	0.180	444	0.180	439	0.173					
300	511	0.248	538	0.218	538	0.218	514	0.217					
350	572	0.302	625	0.254	624	0.253	577	0.265					
400	621	0.362	715	0.29	715	0.290	630	0.316					
450	663	0.43	805	0.327	785	0.329	677	0.373					
500	697	0.502	896	0.364	815	0.378	717	0.433					

	Notch root stress-strain for SAE1045 Steel flat plate												
Sa (MPa)	Neul	Neuber's		Elastic FEA		Plastic EA	Proposed						
	σ_{max}	% (€a)	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$					
0	0	0	0	0	0	0	0	0					
50	136	0.065	137	0.0637	133	0.063	136	0.06					
100	263	0.136	273	0.126	267	0.127	264	0.103					
150	354	0.226	410	0.193	404	0.193	360	0.185					
200	415	0.341	546	0.256	457	0.288	428	0.282					
250	461	0.4814	683	0.32	481	0.406	483	0.396					
300	498	0.644	819	0.386	507	0.530	530	0.524					
350	528	0.82	956	0.448	534	0.689	571	0.661					
400	555	1.02	1092	0.513	556	0.868	609	0.813					

Table 11 Results Obtained from SAE1045 under Completely Reversed Nominal Stress.

	Notch root stress-strain for SAE1045 Steel round bar												
S _a	Neu	ıber's	Elas	Elastic FEA		Plastic EA	Proposed						
(MPa)	σ_{max}	% (€a)	σ_{max}	%(e a)	σ_{max}	σ_{max} %(ϵ_a)		%(€a)					
0	0	0	0	0	0	0	0	0					
50	90	0.0393	90	0.0363	90	0.0363	90	0.037					
100	180	0.079	180	0.0727	180	0.0727	180	0.0458					
150	260	0.116	271	0.109	270	0.109	261	0.0825					
200	335	0.16	354	0.142	359	0.142	337	0.122					
250	395	0.209	444	0.179	444	0.179	400	0.167					
300	443	0.264	538	0.217	480	0.216	453	0.216					
350	481	0.323	625	0.252	521	0.258	495	0.267					
400	514	0.39	715	0.288	550	0.310	534	0.323					
450	543	0.465	805	0.324	575	0.371	569	0.384					

Notch root stress-strain for SAE1050M Steel flat plate													
Sa (MPa)	Neuber's		Elastic FEA		E- P Fi	'lastic EA	Proposed						
	σ_{max}	% (€a)	σ_{max}	$\%(\epsilon_a)$	σ_{max}	%(€a)	σ_{max}	$\%(\epsilon_a)$					
0	0	0	0	0	0	0	0	0					
50	137	0.0678	133	0.0459	133	0.046	137	0.0441					
100	271	0.135	267	0.132	267	0.132	271	0.117					
150	388	0.213	404	0.2	404	0.200	390	0.192					
200	465	0.316	538	0.265	530	0.275	472	0.282					
250	516	0.447	671	0.331	548	0.383	532	0.390					
300	553	0.599	805	0.397	571	0.506	578	0.512					
350	583	0.769	938	0.463	593	0.645	619	0.645					
400	606	0.956	1076	0.531	620	0.804	653	0.791					
450	629	1.18	1210	0.597	643	0.986	687	0.959					

Table 12 Results Obtained from SAE1050M under C	Completely Reversed Nominal Stress.
---	-------------------------------------

	Notch root stress-strain for SAE1050M Steel round bar											
S_a	Neı	ıber's	Elas	Elastic FEA		'lastic EA	Proposed					
(MPa)	σ_{max}	σ_{max} % (ϵ_{a})		σ_{max} %(ϵ_a)		σ_{max} %(ϵ_a)		$\%(\epsilon_a)$				
0	0	0	0	0	0	0	0	0				
50	87	0.0431	90	0.0412	90	0.041	87	0.0264				
100	179	0.0892	180	0.0824	180	0.082	179	0.0708				
150	257	0.128	270	0.123	270	0.123	258	0.110				
200	340	0.176	359	0.164	359	0.164	342	0.155				
250	406	0.231	444	0.203	444	0.203	410	0.205				
300	455	0.298	538	0.245	485	0.245	463	0.263				
350	491	0.374	625	0.285	521	0.290	504	0.326				
400	520	0.46	715	0.326	555	0.349	540	0.397				
450	545	0.00561	805	0.00368	588	0.00416	571	0.477				
500	565	0.0066	896	0.00409	602	0.0049	598	0.556				

	Notch root stress-strain for SAE1141MA Steel flat plate												
Sa (MPa)	Neul	ber's	Elas	Elastic FEA		'lastic EA	Proposed						
	σ_{max}	% (€a)	σ_{max}	%(€a)	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$					
0	0	0	0	0	0	0	0	0					
50	137	0.0685	137	0.0685	137	0.066	137	0.04					
100	273	0.137	273	0.137	273	0.133	273	0.09					
150	400	0.212	404	0.201	400	0.201	400	0.194					
200	485	0.3	538	0.268	485	0.268	490	0.274					
250	545	0.423	671	0.334	545	0.370	558	0.377					
300	585	0.561	805	0.401	585	0.490	607	0.491					
350	618	0.73	942	0.47	642	0.607	650	0.625					
400	645	0.92	1076	0.536	675	0.755	688	0.771					
450	667	1.12	1210	0.603	693	0.92	721	0.925					
500	687	1.3	1343	0.669	710	1.09	753	1.065					

Table 13 Results Obtained from SAE1050M under Completely Reversed Nominal Stress.

Notch root stress-strain for SAE1141MA Steel round bar									
S_a	Neuber's		Elastic FEA		E- Plastic FEA		Proposed		
(MPa)	σ_{max}	% (€a)	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$	σ_{max}	$\%(\epsilon_a)$	
0	0	0	0	0	0	0	0	0	
50	90	0.045	90	0.0416	90	0.0416	90	0.0307	
100	179	0.0895	180	0.0833	180	0.0833	179	0.0742	
150	270	0.135	271	0.125	271	0.125	270	0.118	
200	354	0.18	358	0.165	358	0.165	354	0.161	
250	427	0.233	444	0.205	444	0.205	429	0.210	
300	483	0.299	538	0.248	500	0.248	489	0.268	
350	525	0.373	625	0.288	553	0.288	535	0.330	
400	557	0.458	715	0.33	590	0.329	573	0.400	
450	584	0.00553	805	0.00371	623	0.0038	606	0.476	
500	606	0.00662	896	0.00413	665	0.0044	635	0.561	

Figure 60 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method

Figure 61 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method

Figure 62 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method

Figure 63 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method

Figure 64 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method

Figure 65 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method

Figure 66 Local Strain Obtained from Elasto-plastic FEA, Neuber Rule and Proposed Method

Figure 67 Local Strain Obtained from Elasto-Plastic FEA, Neuber Rule and Proposed Method

Figure 68 Snapshot from ABAQUS Viewer for Strain Contours of Flat Plate under Tensile Cyclic Load.

Figure 69 Snapshot using fe-safe/ABAQUS Viewer for Fatigue Life Contours of Flat Plate under Tensile Cyclic Load.

Figure 70 Snapshot from ABAQUS Viewer for Strain Contours of Round Bar under Tensile Cyclic Load.

Figure 71 Snapshot using fe-safe/ABAQUS Viewer Fatigue Life Contours of Round Bar under Tensile Cyclic Load

6 CONCLUSIONS

Material data that ranged from low, medium and high strength alloy steels were used in this study, correlations among monotonic tensile data and fatigue properties were investigated, the predicted data was compared with the data predicted using commonly used methods and with experimental data. In the second part of this study, a notch root strain prediction model was developed by creating a notch strain correction expression based on the cyclic material property n', subtracted from Neuber's rule predicted strain. In the second stage a linear interpolation scheme was applied between the notch strain value obtained from the first stage and elastic finite element analysis notch root strain value. The effect of K' on the notch strain is not included in the model it needs more investigation to combine the two effects (n' and K') into one mathematical model which is out of the scope of this work.

Based on the discussions from the previous sections, the following can be concluded:

- 1. A strong correlation is found between ultimate tensile strength and hardness, in the proposed method as in Eq. (124), a nonlinear relationship provides a better fit to the existing methods with $R^2=0.98$.
- The results obtained by using correlation method proposed in Eq. (124), are closer to experimental data compared with Roessle-Fatemi's ultimate tensile strength-Brinell hardness correlation method.
- 3. Ultimate tensile strength obtained from Eq. (124) is substituted with a corresponding Brinell-hardness HB in the Modified Universal Slopes method; that results in a new method Eq. (135), in which fatigue properties can be predicted using Brinell-hardness, true fracture ductility, and modulus of elasticity.
- Fatigue parameters obtained by the proposed method are closer to experimental data when they are compared with the results obtained from the Modified Universal Slopes model for most of the tested steels.
- A two-step new prediction method is developed based on the cyclic materials property n' and linear interpolation of Neuber's rule and linear finite element analysis.

- 2) The proposed method notch strain values are in good agreement with the nonlinear finite element analysis compared with the use of Neuber's method.
- 3) Nonlinear finite element analysis can be replaced by linear finite element analysis.
- 4) Prediction capability is slightly better in case of plane strain condition

Appendices

7 APPENDIX A

Number	AISI	Treatment temperature C ⁰	HB	Su (Exp.)	Su (Prop.)	Su (Prop.)/Su (Exp.)	Su (R-F)	S _{u (R-} F)/Su(Exp.)
1	1015		126	420	468	1.11	435	1.04
2	1015	925	121	424	458	1.08	417	0.98
3	1015	870	111	386	438	1.14	381	0.99
4	1020		143	448	503	1.12	496	1.11
5	1020	870	131	441	478	1.08	453	1.03
6	1020	870	111	394	438	1.11	381	0.97
7	1022	925	143	482	503	1.04	496	1.03
8	1022	870	137	429	490	1.14	475	1.11
9	1030		179	551	584	1.06	629	1.14
10	1030	845	126	463	468	1.01	435	0.94
11	1040		201	620	639	1.03	712	1.15
12	1040	900	170	589	563	0.96	596	1.01
13	1040	790	149	518	516	1.00	518	1.00
14	1050		229	723	714	0.99	819	1.13
15	1050	900	217	748	681	0.91	773	1.03
16	1050	790	187	636	604	0.95	659	1.04
17	1060		241	813	749	0.92	865	1.06
18	1060	790	179	625	584	0.93	629	1.01
19	1080		293	965	914	0.95	1070	1.11
20	1080	900	293	1010	914	0.91	1070	1.06
21	1080	790	174	615	572	0.93	611	0.99
22	1095	900	293	1013	914	0.90	1070	1.06
23	1095	790	192	656	616	0.94	678	1.03
24	1117	900	137	467	490	1.05	475	1.02
25	1117	855	121	429	458	1.07	417	0.97
26	1118		149	521	516	0.99	518	0.99
27	1118	790	131	450	478	1.06	453	1.01
28	1137		192	627	616	0.98	678	1.08
29	1137	790	174	584	572	0.98	611	1.05
30	1141		192	675	616	0.91	678	1.00
31	1141	900	201	706	639	0.90	712	1.01
32	1141	815	163	598	547	0.91	570	0.95
33	1144		212	703	668	0.95	754	1.07
34	1144	900	197	667	629	0.94	697	1.04
35	1144	790	167	584	556	0.95	585	1.00
36	1340	800	207	703	654	0.93	735	1.04

Table 14 Ultimate Tensile Strength Obtained from Proposed, Roessle-Fatemi S_u – HB Correlation Models Compared with Experimental Data.

Number	AISI	Treatment temperature C ⁰	HB	Su (Exp.)	Su (Prop.)	Su (Prop.)/Su (Exp.)	Su (R-F)	S _{u (R-F)} /S _u (Exp.)
37	3140	870	262	891	812	0.91	947	1.06
38	3140	815	197	689	629	0.91	697	1.01
39	4130	870	197	668	629	0.94	697	1.04
40	4130	865	156	560	531	0.95	544	0.97
41	4140	870	302	1020	946	0.93	1106	1.08
42	4140	815	197	655	629	0.96	697	1.06
43	4150	815	197	729	629	0.86	697	0.96
44	4320	895	235	792	731	0.92	842	1.06
45	4320	850	163	579	547	0.94	570	0.98
46	4340	870	363	1279	1187	0.93	1356	1.06
47	4340	810	217	744	681	0.92	773	1.04
48	4620	900	174	574	572	1.00	611	1.06
49	4620	855	149	512	516	1.01	518	1.01
50	4820	860	229	750	714	0.95	819	1.09
51	5140	870	229	792	714	0.90	819	1.03
52	5140	830	167	572	556	0.97	585	1.02
53	5150	870	255	870	790	0.91	920	1.06
54	5150	825	197	675	629	0.93	697	1.03
55	5160	855	269	957	834	0.87	975	1.02
56	5160	815	197	722	629	0.87	697	0.96
57	6150	870	269	939	834	0.89	975	1.04
58	6150	815	197	667	629	0.94	697	1.04
59	8620	915	183	632	594	0.94	644	1.02
60	8620	870	149	536	516	0.96	518	0.97
61	8630	870	187	650	604	0.93	659	1.01
62	8630	845	156	564	531	0.94	544	0.96
63	8650	870	302	1023	946	0.92	1106	1.08
64	8650	795	212	715	668	0.93	754	1.05
65	8740	870	269	929	834	0.90	975	1.05
66	8740	815	201	695	639	0.92	712	1.02
67	9255	900	269	932	834	0.90	975	1.05
68	9255	845	229	774	714	0.92	819	1.06
69	9310	890	269	906	834	0.92	975	1.08
70	9310	845	241	820	749	0.91	865	1.05
71	1030b	540	255	669	790	1.18	920	1.37
72	1030b	650	207	586	654	1.12	735	1.25
73	1040b	425	352	841	1140	1.36	1310	1.56
74	1040b	540	269	779	834	1.07	975	1.25

Number	AISI	Treatment temperature C ⁰	HB	Su (Exp.)	Su (Prop.)	Su (Prop.)/Su (Exp.)	Su (R-F)	Su (R-F)/Su (Exp.)
75	1040b	650	201	669	639	0.95	712	1.06
76	1040	205	262	779	812	1.04	947	1.22
77	1040	315	255	779	790	1.01	920	1.18
78	1040	425	241	758	749	0.99	865	1.14
79	1040	540	212	717	668	0.93	754	1.05
80	1040	650	192	634	616	0.97	678	1.07
81	1050b	540	293	862	914	1.06	1070	1.24
82	1050b	650	235	717	731	1.02	842	1.17
83	1050	315	321	979	1016	1.04	1183	1.21
84	1050	425	277	938	860	0.92	1006	1.07
85	1050	540	262	876	812	0.93	947	1.08
86	1050	650	223	738	697	0.95	796	1.08
87	1060	205	321	1103	1016	0.92	1183	1.07
88	1060	315	321	1103	1016	0.92	1183	1.07
89	1060	425	311	1076	979	0.91	1142	1.06
90	1060	540	277	965	860	0.89	1006	1.04
91	1060	650	229	800	714	0.89	819	1.02
92	1080	205	388	1310	1300	0.99	1461	1.12
93	1080	315	388	1303	1300	1.00	1461	1.12
94	1080	425	375	1289	1240	0.96	1406	1.09
95	1080	540	321	1131	1016	0.90	1183	1.05
96	1080	650	255	889	790	0.89	920	1.03
97	1095b	425	388	1372	1300	0.95	1461	1.06
98	1095b	650	235	841	731	0.87	842	1.00
99	1095	205	401	1289	1363	1.06	1516	1.18
100	1095	315	375	1262	1240	0.98	1406	1.11
101	1095	425	363	1213	1187	0.98	1356	1.12
102	1095	540	321	1089	1016	0.93	1183	1.09
103	1095	650	269	896	834	0.93	975	1.09
104	1137	205	352	1082	1140	1.05	1310	1.21
105	1137	315	285	986	887	0.90	1038	1.05
106	1137	425	262	876	812	0.93	947	1.08
107	1137	540	229	758	714	0.94	819	1.08
108	1137	650	197	655	629	0.96	697	1.06
109	1137b	205	415	1496	1433	0.96	1576	1.05
110	1137b	315	375	1372	1240	0.90	1406	1.02
111	1137b	425	311	1103	979	0.89	1142	1.04

Number	AISI	Treatment temperature C ⁰	HB	S _{u (Exp.)}	S _{u (Prop.)}	S _{u (Prop.)} /S _{u (Exp.)}	S _u (R-F)	S _{u (R-F)} /S _u (Exp.)
112	1137b	540	262	827	812	0.98	947	1.15
113	1137b	650	187	648	604	0.93	659	1.02
114	1141	205	461	1634	1689	1.03	1776	1.09
115	1141	315	415	1462	1433	0.98	1576	1.08
116	1141	425	331	1165	1055	0.91	1224	1.05
117	1141	540	262	896	812	0.91	947	1.06
118	1141	650	217	710	681	0.96	773	1.09
119	1144	205	277	876	860	0.98	1006	1.15
120	1144	315	262	869	812	0.93	947	1.09
121	1144	425	248	848	769	0.91	892	1.05
122	1144	540	235	807	731	0.91	842	1.04
123	1144	650	217	724	681	0.94	773	1.07
124	1330b	205	459	1600	1677	1.05	1768	1.10
125	1330b	315	402	1427	1368	0.96	1521	1.07
126	1330b	425	335	1158	1070	0.92	1240	1.07
127	1330b	540	263	876	815	0.93	951	1.09
128	1330b	650	216	731	678	0.93	769	1.05
129	1340	205	505	1806	1972	1.09	1973	1.09
130	1340	315	453	1586	1642	1.04	1741	1.10
131	1340	425	375	1262	1240	0.98	1406	1.11
132	1340	540	295	965	921	0.95	1078	1.12
133	1340	650	252	800	781	0.98	908	1.13
134	4037	205	310	1027	975	0.95	1138	1.11
135	4037	315	295	951	921	0.97	1078	1.13
136	4037	425	270	876	838	0.96	978	1.12
137	4037	540	247	793	766	0.97	888	1.12
138	4037	650	220	696	689	0.99	784	1.13
139	4042	205	516	1800	2050	1.14	2022	1.12
140	4042	315	455	1613	1654	1.03	1750	1.08
141	4042	425	380	1289	1263	0.98	1427	1.11
142	4042	540	300	986	939	0.95	1098	1.11
143	4042	650	238	793	740	0.93	853	1.08
144	4130b	205	467	1627	1725	1.06	1803	1.11
145	4130b	315	435	1496	1540	1.03	1663	1.11
146	4130b	425	380	1282	1263	0.99	1427	1.11
147	4130b	540	315	1034	993	0.96	1159	1.12
148	4130	650	245	814	760	0.93	881	1.08

Number	AISI	Treatment temperature C ⁰	HB	Su (Exp.)	Su (Prop.)	Su (Prop.)/S(Exp.)	Su (R-F)	Su (R-F)/Su Exp.)
149	4140	205	510	1772	2007	1.13	1995	1.13
150	4140	315	445	1551	1596	1.03	1706	1.10
151	4140	425	370	1248	1218	0.98	1385	1.11
152	4140	540	285	951	887	0.93	1038	1.09
153	4140	650	230	758	717	0.95	822	1.09
154	4150	205	530	1931	2152	1.11	2086	1.08
155	4150	315	495	1765	1904	1.08	1928	1.09
156	4150	425	440	1517	1568	1.03	1684	1.11
157	4150	540	370	1207	1218	1.01	1385	1.15
158	4150	650	290	958	904	0.94	1058	1.10
159	4340	205	520	1875	2079	1.11	2040	1.09
160	4340	315	486	1724	1845	1.07	1887	1.09
161	4340	425	430	1469	1513	1.03	1641	1.12
162	4340	540	360	1172	1174	1.00	1344	1.15
163	4340	650	280	965	870	0.90	1018	1.06
164	5046	205	482	1744	1819	1.04	1869	1.07
165	5046	315	401	1413	1363	0.96	1516	1.07
166	5046	425	336	1138	1074	0.94	1244	1.09
167	5046	540	282	938	877	0.93	1026	1.09
168	5046	650	235	786	731	0.93	842	1.07
169	50B46	315	505	1779	1972	1.11	1973	1.11
170	50B46	425	405	1393	1383	0.99	1533	1.10
171	50B46	540	322	1082	1020	0.94	1187	1.10
172	50B46	650	273	883	847	0.96	990	1.12
173	50B60	315	525	1882	2115	1.12	2063	1.10
174	50B60	425	435	1510	1540	1.02	1663	1.10
175	50B60	540	350	1124	1131	1.01	1302	1.16
176	50B60	650	290	896	904	1.01	1058	1.18
177	5130	205	475	1613	1775	1.10	1838	1.14
178	5130	315	440	1496	1568	1.05	1684	1.13
179	5130	425	379	1275	1258	0.99	1423	1.12
180	5130	540	305	1034	957	0.93	1118	1.08
181	5130	650	245	793	760	0.96	881	1.11
182	5140	205	490	1793	1871	1.04	1905	1.06
183	5140	315	450	1579	1624	1.03	1728	1.09
184	5140	425	365	1310	1196	0.91	1364	1.04
185	5140	540	280	1000	870	0.87	1018	1.02

Number	AISI	Treatment temperature C ⁰	HB	Su (Exp.)	Su (Prop.)	Su (Prop.)/Su (Exp.)	Su (R-F)	S _{u (R-F)} /S _u (Exp.)
186	5140	650	235	758	731	0.96	842	1.11
187	5150	205	525	1944	2115	1.09	2063	1.06
188	5150	315	475	1737	1775	1.02	1838	1.06
189	5150	425	410	1448	1408	0.97	1555	1.07
190	5150	540	340	1124	1090	0.97	1261	1.12
191	5150	650	270	807	838	1.04	978	1.21
192	5160	315	555	1999	2348	1.17	2201	1.10
193	5160	425	461	1606	1689	1.05	1776	1.11
194	5160	540	341	1165	1094	0.94	1265	1.09
195	5160	650	269	896	834	0.93	975	1.09
196	51B60	425	460	1634	1683	1.03	1772	1.08
197	51B60	540	355	1207	1152	0.95	1323	1.10
198	51B60	650	290	965	904	0.94	1058	1.10
199	6150	205	538	1931	2213	1.15	2123	1.10
200	6150	315	483	1724	1826	1.06	1874	1.09
201	6150	425	420	1434	1459	1.02	1598	1.11
202	6150	540	345	1158	1111	0.96	1281	1.11
203	6150	650	282	945	877	0.93	1026	1.09
204	81B45	205	550	2034	2307	1.13	2178	1.07
205	81B45	315	475	1765	1775	1.01	1838	1.04
206	81B45	425	405	1407	1383	0.98	1533	1.09
207	81B45	540	338	1103	1082	0.98	1252	1.14
208	81B45	650	280	896	870	0.97	1018	1.14
209	8630	205	465	1641	1713	1.04	1794	1.09
210	8630	315	430	1482	1513	1.02	1641	1.11
211	8630	425	375	1276	1240	0.97	1406	1.10
212	8630	540	310	1034	975	0.94	1138	1.10
213	8630	650	240	772	746	0.97	861	1.12
214	8640	205	505	1862	1972	1.06	1973	1.06
215	8640	315	460	1655	1683	1.02	1772	1.07
216	8640	425	400	1379	1358	0.98	1512	1.10
217	8640	540	340	1103	1090	0.99	1261	1.14
218	8640	650	280	896	870	0.97	1018	1.14
219	86B45	205	525	1979	2115	1.07	2063	1.04
220	86B45	315	475	1696	1775	1.05	1838	1.08
221	86B45	425	395	1379	1334	0.97	1491	1.08
222	86B45	540	335	1103	1070	0.97	1240	1.12

Number	AISI	Treatment temperature C ⁰	НВ	Su (Exp.)	Su (Prop.)	Su (Prop.)/Su (Exp.)	Su (R-F)	Su (R-F)/Su (Exp.)
223	86B45	650	280	903	870	0.96	1018	1.13
224	8650	205	525	1937	2115	1.09	2063	1.07
225	8650	315	490	1724	1871	1.09	1905	1.11
226	8650	425	420	1448	1459	1.01	1598	1.10
227	8650	540	340	1172	1090	0.93	1261	1.08
228	8650	650	280	965	870	0.90	1018	1.06
229	8660	425	460	1634	1683	1.03	1772	1.08
230	8660	540	370	1310	1218	0.93	1385	1.06
231	8660	650	315	1068	993	0.93	1159	1.08
232	8740	315	495	1717	1904	1.11	1928	1.12
233	8740	425	415	1434	1433	1.00	1576	1.10
234	8740	540	363	1207	1187	0.98	1356	1.12
235	8740	650	302	986	946	0.96	1106	1.12
236	9255	425	477	1606	1788	1.11	1847	1.15
237	9255	540	352	1255	1140	0.91	1310	1.04
238	9255	650	285	993	887	0.89	1038	1.05
239	9260	425	470	1758	1744	0.99	1816	1.03
240	9260	540	390	1324	1310	0.99	1470	1.11
241	9260	650	295	979	921	0.94	1078	1.10
242	94B30	205	475	1724	1775	1.03	1838	1.07
243	94B30	315	445	1600	1596	1.00	1706	1.07
244	94B30	425	382	1344	1272	0.95	1436	1.07
245	94B30	540	307	1000	964	0.96	1126	1.13
246	94B30	650	250	827	775	0.94	900	1.09

Figure72 Comparison between Three Prediction Approaches for SAE 15B35, HB286 Steel

Figure 73 Comparison between Three Prediction Approaches for SAE 1141, HB223 Steel

Figure 74 Comparison between Three Prediction Approaches for SAE 8620,HB326 Steel

Figure 75 Comparison between Three Prediction Approaches for SAE A538C, HB480 Steel

Figure 76 Comparison between Three Prediction Approaches for SAE1015,HB130 Steel

Figure 77, Comparison between Three Prediction Approaches for SAE41B17, HB277 Steel

Figure 78 Comparison between Three Prediction Approaches for SAE 1090, HB309 Steel

Figure 79 Comparison between Three Prediction Approaches for SAE1050M,HB220 Steel

Figure 80 Comparison between Three Prediction Approaches for SAE 1541, HB195 Steel

Figure 81 Comparison between Three Prediction Approaches for SAE4340, HB350 Steel

Figure 82 Comparison between Three Prediction Approaches for SAE1090,HB259 Steel

Figure 83 Comparison between Three Prediction Approaches for SAE1117, HB193 Steel

Figure 84 Comparison between Three Prediction Approaches for SAE1141V,HB217 Steel

Figure 85 Comparison between Three Prediction Approaches for SAE1151V,HB251 Steel

Figure 86 Comparison between Three Prediction Approaches for SAE1541, HB180 Steel

Figure 87 Comparison between Three Prediction Approaches for SAE1541,HB250 Steel

Figure 88 Comparison between Three Prediction Approaches for SAE4620, HB289 Steel

Figure 89 Comparison between Three Prediction Approaches for SAE1045,HB222 Steel

Figure 90 Comparison between Three Prediction Approaches for SAE5150,HB245 Steel

Figure 91 Comparison between Three Prediction Approaches for SAE8620,HB430 Steel

Figure 92 Comparison between Three Prediction Approaches for AISI-310,HB145 Steel

Figure 93 Comparison between Three Prediction Approaches for AISI-Ni8,HB170 Steel

Figure 94 Comparison between Three Prediction Approaches for AISI304, HB327 Steel

Figure 95 Comparison between Three Prediction Approaches for Man-Ten, HB150 Steel

Figure 96 Comparison between Three Prediction Approaches for VAN-80,HB225 Steel

Figure 97 Comparison between Three Prediction Approaches for AM-350, HB325 Steel

8 APPENDIX B

		Note	ch roo	ot stress	s-strain fo	or S	AE11	41V	/ Stee	l flat	t plate			
Poversal	S (MD	20)		Neube	er's	E-	Plasti	c (F	EA)			Pro	posed	1
Reversar	S_a (IVII	a)	$\sigma_{\rm m}$	ax	% (€a)		σ_{max}		%(e	a)	σ_{max}	ĸ	9	$\delta(\epsilon_a)$
1	350		56	2	0.74		567		0.60	7	597	'	0	.612
2	100		-7	8	0.41		-108		0.30	3	-44		(0.29
3	280		40	5	0.637		442		0.52	2	440)	0).515
4	-240		-48	35	-0.38		-528		-0.3	13	-501	l	-().349
5	291		51	5	0.574		551		0.46	8	542) /	0).486
6	40		-12	27	0.242		-136		0.16	3	-104	1	0).157
7	163		20	8	0.395		222		0.31	2	231		0	.312
8	-220		-46	58	-0.326		-521		-0.27	73	-480)	-().329
9	350		56	4	0.737		571		0.6		599)	0	.608
Doinflow	Neu	ıber'	S	E-Pla	stic (FEA	A)	Pro	э. М	lethod		Cycle	s to	failur	e (N _f)
cycles	σ _m (MPa)	%	(ϵ_a)	σ _m (MPa) % (ε	a)	σ _m (MPa	a)	% (e	a)	Neuber	·]	FEA	Pro. M
1	39	0).56	20	0.46	5	40		0.48	3	3890	(6600	5850
2	164	0.	.113	167	0.11	L	167	7	0.11	2	∞		∞	8
3	-131	0.	.539	15	0.37	7	-132	2	0.46	5	4300	1	2500	7000
4	41	0.	.153	43	0.074	15	42		0.077	75	600000)	∞	∞
- -	J	Notc	ch roo	t stress	-strain fo	r Sz	AE114	41V	Steel	l rou	nd bar			
Devenuel		Notc	ch roo	t stress Neube	-strain fo er's	r Sz	AE114 E-Pla	41V Istic	Steel	l rou .)	nd bar	Pro	posec	1
Reversal	S _a (MF	Notc Pa)	ch roo σ _n	t stress Neube	-strain fo er's % (ε _a)	r Sz	AE11 ² E-Pla σ _{max}	41V Istic	Steel (FEA %(€	l rou .) a)	nd bar	Pro	posec %	1 δ(ε _a)
Reversal	S _a (MF 500	Notc Pa)	ch roo σ _m 60	t stress Neube	$\begin{array}{c} -\text{strain fo} \\ \text{er's} \\ \% \ (\epsilon_a) \\ 0.555 \end{array}$	r Sz	AE114 E-Pla σ _{max} 650	41V Istic	Steel (FEA %(€ 0.43	rou .) a) 39	nd bar o _{ma} 630	Pro x	posec 9 0	1 6(ε _a) 0.451
Reversal 1 2	S _a (MF 500 100	Notc Pa)	ch roo σ _n 60 -8	t stress Neube	-strain fo er's % (ϵ_a) 0.555 0.244	r Sz	AE114 E-Pla σ _{max} 650 -58	41V stic	Steel (FEA %(€ 0.43 0.14	() a) 39 4	nd bar σ _{ma} 630 -57	Pro x	posec 9 0	$\frac{1}{6(\epsilon_a)}$ 0.451 0.151
Reversal 1 2 3	S _a (MF 500 100 280	Notc Pa)	ch roo σ _n 60 -8	t stress Neube hax 00 33 39	-strain fo er's % (ε _a) 0.555 0.244 0.378	r Sz	AE114 E-Pla σ _{max} 650 -58 281	41V Istic	Steel (FEA %(€ 0.43 0.14 0.27	l rou .) a) 39 4 73	nd bar σ _{ma} 630 -57 265	Pro x	posec 9 0 0 0	$\frac{1}{6(\epsilon_a)}$ 0.451 0.151 0.281
Reversal 1 2 3 4	S _a (MF 500 100 280 -280	Notc Pa)	ch roo σ _n 60 -8 23 -40	t stress Neube hax 00 33 39 65	-strain fo er's % (ε _a) 0.555 0.244 0.378 -0.205	r Sz	AE114 E-Pla σ _{max} 650 -58 281 -524	41V Istic	Steel (FEA %(€ 0.43 0.14 0.27 -0.10	l rou .) a) 39 4 73 52	nd bar σ _{ma} 630 -57 265 -469	Pro x) ;	posec 9 0 0 0 0 -($\frac{1}{6(\epsilon_a)}$ 0.451 0.151 0.281 0.231
Reversal 1 2 3 4 5	S _a (MF 500 100 280 -280 320	Notc Pa)	ch roo σn 60 8 23 40 45	t stress Neube nax 00 33 39 65 53	-strain fo er's % (ε _a) 0.555 0.244 0.378 -0.205 0.316	r Sz	AE114 E-Pla σmax 650 -58 281 -524 470	41V Istic	Steel (FEA %(€ 0.43 0.14 0.27 -0.10 0.28	l rou a) 39 4 73 52 39	nd bar σ _{ma} 630 -57 265 -469 465	Prc x) ;	00000000000000000000000000000000000000	$ \frac{1}{6(\epsilon_a)} $ 0.451 0.151 0.281 0.231 0.253
Reversal 1 2 3 4 5 6	S _a (MF 500 100 280 -280 320 40	Notc Pa)	ch roo σ _n 60 -8 23 -40 45 -4	t stressNeubernax00333955532	-strain fo (ϵ_a) 0.555 0.244 0.378 -0.205 0.316 0.106	r Sz	AE112 E-Pla σmax 650 -58 281 -524 470 -83	41V istic	Steel (FEA %(€ 0.43 0.14 0.27 -0.16 0.28 0.07	l rou a) 39 4 73 62 39 77	nd bar σ _{ma} 630 -57 265 -469 465 -31	Pro x) ;	pposec 9 00 00 00 -(0 00 00	$ \frac{1}{6(\epsilon_a)} $ 0.451 0.151 0.281 0.231 0.253 0.063
Reversal 1 2 3 4 5 6 7	S _a (MF 500 100 280 -280 320 40 140	Pa)	ch roo σ _n 60 -8 23 -40 45 -4 13	t stress Neube nax 00 33 3 39 5 55 5 53 - 2 37 5	-strain fo er's % (ε _a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18	r Sz	AE114 E-Pla σmax 650 -58 281 -524 470 -83 158	41V Istic	Steel (FEA %(€ 0.43 0.14 0.27 -0.16 0.28 0.07 0.15	l rou) a) 39 4 73 52 39 77 52	nd bar σ _{ma} 630 -57 265 -469 465 -31 148	Pro	9 9 00 00 00 -(00 00 00 00	$ \frac{1}{6(\epsilon_a)} \\ 0.451 \\ 0.151 \\ 0.281 \\ 0.231 \\ 0.253 \\ 0.063 \\ 0.123 $
Reversal 1 2 3 4 5 6 7 8	S _a (MF 500 100 280 -280 320 40 140 -240	Pa)	ch roo σ _n 60 -8 23 -40 45 -41 13 -41	t stress Neube nax 00 33 3 39 55 5 53 5 53 5 53 5 53 5 53 5 5	-strain fo $er's$ % (ϵ_a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18 -0.158		AE112 E-Pla σmax 650 -58 281 -524 470 -83 158 -450		Steel (FEA %(€ 0.43 0.14 0.27 -0.10 0.28 0.07 0.15 -0.13	rou) a) 39 4 73 52 39 77 52 33	nd bar σ _{ma} 630 -57 265 -469 465 -31 148 -420	Pro x) ; ; ; ; ;	pposec 9 00 00 00 (00 00 00 ($ \frac{1}{6(\epsilon_a)} $ 0.451 0.151 0.281 0.231 0.253 0.063 0.123 0.191
Reversal 1 2 3 4 5 6 7 8 9	S _a (MF 500 100 280 -280 320 40 140 -240 500	Noto Pa)	ch roo σ _n 60 -8 23 -40 45 -4 13 -41 61	t stress Neube nax 200 33 39 55 5 53 5 53 5 53 5 53 5 53 5 53	-strain fo er's % (ε _a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18 -0.158 0.543	r SA	AE114 E-Pla σmax 650 -58 281 -524 470 -83 158 -450 655		Steel (FEA %(€ 0.43 0.14 0.27 -0.16 0.28 0.07 0.15 -0.13 0.43	rou) a) 39 4 73 52 39 77 52 33 36	nd bar σma 630 -57 265 -469 465 -31 148 -420 640	Prc x) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	9 9 00 00 00 00 00 00 00 00 00	$\begin{array}{c} 1\\6(\epsilon_a)\\0.451\\0.151\\0.281\\0.231\\0.253\\0.063\\0.123\\0.191\\0.442\end{array}$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow avalues	S _a (MF 500 100 280 -280 320 40 140 -240 500 Neu	Pa)	ch roo σ _n 60 -8 23 -40 45 -41 13 -41 61 s	t stress Neuber nax 00 33 39 65 53 22 37 25 .1	-strain fo er's % (ε _a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18 -0.158 0.543 Plastic FEA)		AE112 E-Pla σmax 650 -58 281 -524 470 -83 158 -450 655 Pro. I	Metl	Steel (FEA %(€ 0.43 0.14 0.27 -0.16 0.28 0.07 0.15 -0.13 0.43 hod	rou) a) 39 4 73 52 33 52 33 52 33 52 33 52 36	nd bar σ _{ma} 630 -57 265 -469 465 -31 148 -420 640 Cycles	Pro	posec 9 00 00 00 -(00 00 -(00 00 -(00 00 -($\begin{array}{c} 1 \\ 6(\epsilon_a) \\ 0.451 \\ 0.151 \\ 0.281 \\ 0.231 \\ 0.253 \\ 0.063 \\ 0.123 \\ 0.191 \\ 0.442 \\ (N_f) \end{array}$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles	S _a (MF 500 100 280 -280 320 40 140 -240 500 Neu σ _m	Notc Pa)	$ \begin{array}{c c} & \sigma_n \\ & \sigma_n \\ & 60 \\ & -8 \\ & 23 \\ & -40 \\ & 45 \\ & -41 \\ & 13 \\ & -41 \\ & 61 \\ & s \\ & (\epsilon_a) \\ \end{array} $	t stress Neube nax 00 33 3 39 55 53 5 53 5 53 5 53 5 53 5 53	-strain fo er's % (ε _a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18 -0.158 0.543 Plastic FEA) % (ε _a)		AE112 E-Pla σmax 650 -58 281 -524 470 -83 158 -450 655 Pro. I σm	Metl	Steel (FEA) (ϵ) 0.14 0.27 -0.10 0.28 0.07 0.15 -0.13 0.43 hod (ϵ_a)	rou) a) 39 4 73 52 33 52 33 56 Ne	nd bar σ _{ma} 630 -57 265 -469 465 -31 148 -420 640 Cycles cuber	Pro	posec 9 00 00 -0 00 -0 ailure	$\frac{1}{6(\epsilon_a)}$ 0.451 0.151 0.281 0.231 0.253 0.063 0.123 0.191 0.442 (N _f) Pro.
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1	Sa (MF) 500 100 280 -280 320 40 140 -240 500 Neu σm 68	Notc Pa) ber ber % 0	$\begin{array}{c c} & & & \\ & & &$	t stressNeubernax00333965336533251 E^{-1} (I) σ_m 42	-strain fo er's % (€a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18 -0.158 0.543 Plastic FEA) % (€a) 0.3		AE114 E-Pla σmax 650 -58 281 -524 470 -83 158 -450 655 Pro. I σm 69	Metl	Steel (FEA) $\%(\epsilon)$ 0.43 0.14 0.27 -0.16 0.28 0.07 0.15 -0.13 0.43 hod (ϵ_a) 341	rou) a) 39 4 73 52 33 52 33 52 33 52 36 Ne 1(σmax σmax 630 -57 265 -469 465 -31 148 -420 640 Cycles cuber 0000	Prox xx) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	posec 9 00 00 00 00 00 00 ailure EA 000	$\begin{array}{c} 1 \\ 6(\epsilon_a) \\ 0.451 \\ 0.151 \\ 0.281 \\ 0.231 \\ 0.253 \\ 0.063 \\ 0.123 \\ 0.191 \\ 0.442 \\ \hline \\ (N_f) \\ \hline \\ Pro. \\ 16000 \\ \hline \end{array}$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2	$\begin{array}{c} S_{a} (MF) \\ 500 \\ 100 \\ 280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Notc Pa)	$ \begin{array}{c c} & \sigma_n \\ & \sigma_n \\ & 60 \\ & -8 \\ & 23 \\ & -40 \\ & 45 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & -40 \\ & 13 \\ & -40 \\$	t stress Neubo nax 00 33 39 55 53 25 1 E-1 (1) σ_m 42 112	-strain fo er's % (ε _a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18 -0.158 0.543 Plastic FEA) % (ε _a) 0.3 0.3		AE112 E-Pla σmax 650 -58 281 -524 470 -83 158 -450 655 Pro. I σm 69 80	Metl % 0.0	Steel (FEA) (e) 0.43 0.14 0.27 -0.10 0.28 0.07 0.15 -0.13 0.43 hod (e_a) 341 065	rou) a) 39 4 73 52 33 52 33 36 Ne 10	nd bar σma: 630 -57 265 -469 465 -31 148 -420 640 Cycles euber 0000 ∞	Prc x 5 5 6 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	posec 9 00 00 -0 00 00 -0 00 ailure EA 000 x	$\begin{array}{c} 1 \\ 6(\epsilon_a) \\ 0.451 \\ 0.151 \\ 0.281 \\ 0.231 \\ 0.253 \\ 0.063 \\ 0.123 \\ 0.123 \\ 0.191 \\ 0.442 \\ \hline \\ (N_f) \\ \hline \\ Pro. \\ 16000 \\ \infty \\ \end{array}$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2 3	$\begin{array}{c} S_{a} (MF) \\ 500 \\ 100 \\ 280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ \hline \\ S00 \\ \hline \\ \\ \\ \\ S00 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Notc Pa)	$ \begin{array}{c c} & \sigma_n \\ & \sigma_n \\ & 60 \\ & -8 \\ & 23 \\ & -40 \\ & 45 \\ & -40 \\ & 45 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & 13 \\ & -40 \\ & -40 \\ & 13 \\ & -40 \\ & -$	t stress Neuber nax 00 ax 00 00 ax 00 00 00 ax 00 00 00 00 00 ax 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 <td>-strain fo (ϵ_a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18 -0.158 0.543 Plastic FEA) % (ϵ_a) 0.3 .066 0.211</td> <td></td> <td>AE112 E-Pla σmax 650 -58 281 -524 470 -83 158 -450 655 Pro. I σm 69 80 14</td> <td>Metl % 0.0 0.0 0</td> <td>Steel (FEA) (ϵ) 0.1^{4} 0.27 -0.10 0.28 0.07 0.15 -0.13 0.43 hod (ϵ_a) 341 065 222</td> <td>rou a) 39 4 73 52 39 77 52 33 36 Ne 1(55</td> <td>nd bar σma 630 -57 265 -469 465 -31 148 -420 640 Cycles cuber 0000 ∞ 5000</td> <td>Prc x x 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td> <td>posec 9 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>$\frac{1}{6(\epsilon_a)}$ 0.451 0.151 0.281 0.231 0.253 0.063 0.123 0.191 0.442 (Nf) Pro. 16000 ∞ 80000</td>	-strain fo (ϵ_a) 0.555 0.244 0.378 -0.205 0.316 0.106 0.18 -0.158 0.543 Plastic FEA) % (ϵ_a) 0.3 .066 0.211		AE112 E-Pla σmax 650 -58 281 -524 470 -83 158 -450 655 Pro. I σm 69 80 14	Metl % 0.0 0.0 0	Steel (FEA) (ϵ) 0.1^{4} 0.27 -0.10 0.28 0.07 0.15 -0.13 0.43 hod (ϵ_a) 341 065 222	rou a) 39 4 73 52 39 77 52 33 36 Ne 1(55	nd bar σma 630 -57 265 -469 465 -31 148 -420 640 Cycles cuber 0000 ∞ 5000	Prc x x 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	posec 9 0 0 0 0 0 0 0 0 0 0 0 0 0	$\frac{1}{6(\epsilon_a)}$ 0.451 0.151 0.281 0.231 0.253 0.063 0.123 0.191 0.442 (Nf) Pro. 16000 ∞ 80000

Table 15 Results Obtained from SAE1141V under Variable Amplitudes

		Not	tch ro	ot stres	ss-s	train fo	or RQC	2-100	<u>)</u> Stee	l flat	plate			
Doversel	S (ME			Neube	er's		E-Plas	tic (FEA)			Pro	pose	d
Keversai	Sa (IVII	a)	σ_{m}	ax	%	(ϵ_a)	σ_{max}		%(E _a)	σ_{ma}	ix	($\%(\epsilon_a)$
1	350		65	0	0.	66	660		0.5	80	670	б	().569
2	100		-1	9	0.3	331	-24		0.2	64	10)	(0.242
3	280		46	8	0.5	566	470		0.4	97	494	4	(0.476
4	-240		-56	52	-0.	352	-617	7	-0.3	11	-59	6	-	0.317
5	291		59	3	0.5	508	628		0.4	57	612	2	(0.443
6	40		-7	8	0.1	178	-38		0.1	34	-59	7	(0.116
7	163		25	4	0.3	338	273		0.2	92	272	2	(0.275
8	-220		-54	41	-0.	305	-580)	-0.2	77	-54	6	-	0.426
9	350		65	2	0.6	552	657		0.5	80	67	7	(0.564
Rainflow	Neu	ber's	S	E-Pla	stic	: (FEA)) P	ro. N	Aethod	1	Cycle	es to :	failuı	re (N _f)
cycles	σ _m (MPa)	(% (ε _a)	σ _m (MPa)	.)	% (Ea)	$\frac{\sigma_m}{(M)}$	Pa)	% (6	Ea)	Neuber	r I	FEA	Pro. M
1	44	0	.50	22		0.445	5 4	0	0.44	13	2450	4	200	4300
2	244	0	.12	217	·	0.116	5 24	42	0.11	17	∞		∞	∞
3	26	0	.49	10		0.367	7 3	3	0.4	1	2800	1	0100	6000
4	84	0	.08	126)	0.079) 10	07	0.07	79	∞		∞	∞
		Note	ch ro	ot stres	s-si	train fo	or RQC	-100) Steel	roun	id bar			
Reversal	S (ME	D a)		Neube	er's		E-P	lasti	c (FEA	()		Pro	noca	d
Keversu	Da (IVII	a) "						iusti	× .	-/		110	pose	
		,	$\sigma_{\rm m}$	ıax	%	(ϵ_a)	σ _{max}	K	%(Ea)	σma	ax	pose	‰(€a)
1	500		σm 69	nax V8	% 0.:	(ea) 504	σ _{max} 710	k (%(0.4	ε _a) 16	σ _{ma} 70	ax 9	pose (‰(€ _a)).435
1 2	500 100		σ _m 69 -1	1ax 98 9	% 0.5 0.1	(e _a) 504 187	σ _{max} 710		%(0.4 0.0	ε _a) 16 98	σ _{ma} 709	ax 9	(%(ε _a)).435).127
$ \begin{array}{c} 1\\ 2\\ 3\end{array} $	500 100 280		σ _m 69 -1 30	nax	% 0.4 0.1	(ε _a) 504 187 328	σ _{max} 710 178 340		%(0.4 0.0 0.2	ε _a) 16 98 40	σ _{ma} 709 6 32	9 7	((%(ε _a)).435).127).264
$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $	500 100 280 -280		σm 69 -1 30 -52	nax 08 08 00 00 00 00 00 00 00 00 00 00 00	% 0.1 0.1 -0.	(ϵ_a) 504 187 328 196	σmax 710 178 340 -605	5	%(0 0.4 0.0 0.2 -0.2	 <i>ε</i>_a) 16 98 40 205 	σma 709 6 32' -52	7 24	pose ((((%(ε _a)).435).127).264 0.218
1 2 3 4 5	500 100 280 -280 320		σm 69 -1 30 -52 49	nax	% 0.1 0.1 -0.1 0	 (ε_a) 504 187 328 196 .3 	σmax 710 178 340 -603 435	x)) 5	%(0 0.4 0.0 0.2 -0.2 0.2	Ea) 16 98 40 05 74	σma 709 6 322 -52 50	7 24	pose ((((($\%(\epsilon_a)$ (ϵ_a) ().435 ().127 ().264 ().218 ().257
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	500 100 280 -280 320 40		σn 69 -1 30 -52 49	nax	% 0.1 0.1 -0. 0 0.0	(ϵ_a) 504 187 328 196 .3 079	σmax 710 178 340 -603 435 -33	5	%(0 0.4 0.2 -0.2 0.2 0.2	ε _a) 16 98 40 005 74 50	σma 70° 6 32′ -52 50 1	7 24 1	((((((((($\%(\epsilon_a)$ (ϵ_a) ().435 ().127 ().264 ().264 ().218 ().257 ().042
1 2 3 4 5 6 7	500 100 280 -280 320 40 140		σπ 69 -1 300 -52 499 -7 177	nax 08 08 00 00 00 00 00 00 00 00 00 00 00	% 0.: 0.: -0. 0 0.0 0.0	(ϵ_a) 504 187 328 196 .3 079 158	благ благ 710 178 340 -603 435 -33 178	5	%(0 0.4 0.0 0.2 -0.2 0.2 0.0 0.0 0.1	ε _a) 16 98 40 205 74 50 29	σma 709 6 322 -52 50 1 1	7 24 1	, ((((((((((($\%(\epsilon_a)$ (ϵ_a) ().435 ().127 ().264 ().218 ().257 ().042 ().118
1 2 3 4 5 6 7 8	500 100 280 -280 320 40 140 -240		σn 69 -1 300 -52 49 -7 177 -47	hax 08 08 08 00 00 00 00 00 00 00 00 00 00	% 0.: 0.: -0. 0. 0. 0. 0. -0.	(ϵ_a) 504 187 328 196 0.3 079 158 157	ота ота ота ота ота ота ота ота		% (0 0.4 0.0 0.2 -0.2 0.2 0.0 0.1 -0.1	ϵ_a) 16 98 40 05 74 50 29 74	σma 709 6 322 -52 50 1 18 -47	110 ax 9 7 24 1 1 7 0	, (((((((((((((((())))))))	$\%(\epsilon_a)$).435).127).264 0.218).257).042).118 0.183
1 2 3 4 5 6 7 8 9	500 100 280 -280 320 40 140 -240 500		σπ 69 -1 300 -52 499 -7 177 -47	nax	% 0.1 0.1 -0. 0 0.0 0.0 0.1 0.2	(ϵ_a) 504 187 328 196 0.3 079 158 157 493	ота ота ота ота ота ота ота ота		%((0.4 0.0 0.2 -0.2 0.2 0.0 0.1 -0.1 0.4	ϵ_a) 16 98 40 05 74 50 29 74 16	σma 709 6 322 -52 50 1 18 -47 72	7 24 1 1 0 1	pose ((((((((((((((((((($\%(\epsilon_a)$ (ϵ_a) ().435 ().127 ().264 ().218 ().257 ().042 ().118 ().183 ().428
1 2 3 4 5 6 7 8 9 8 9 8 9	500 100 280 -280 320 40 140 -240 500 Neu	ber's	σn 69 -1 300 -52 49 -7 177 -47 711	nax 208 27 27 27 27 27 27 27 27 27 27 27 27 27	% 0.: -0. 0. 0. 0. 0. 20. 21as FEA	(ϵ_a) 504 187 328 196 0.3 079 158 157 493 ttic λ)	благ благ 710 178 340 -605 435 -33 178 -536 707 Рго.	Met	% (0.4 0.0 0.2 -0.2 0.2 0.2 0.0 0.1 -0.1 0.4	ϵ_{a}) 16 98 40 205 74 50 29 74 16	σma 709 6 322 -52 50 1 18 -47 72 Cycles	7 24 1 1 0 1 to fa		$\%(\epsilon_a)$ ().435 ().127 ().264 ().218 ().257 ().042 ().118 ().183 ().428 (N _f)
1 2 3 4 5 6 7 8 9 8 9 8 9 8 9 8	500 100 280 -280 320 40 140 -240 500 Neu δ _m	ber's	$\sigma_{\rm m}$ 69 -1 300 -522 499 -7 177 -47 711 3 $\epsilon_{\rm a}$	hax 98 3 98 27 93 7 7 7 7 7 7 7 1 E-F (F σm	% 0 0 -0. 0.0 0.0 0. -0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. 2. 2. 3. 2. 3. 3. 5. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	(ϵ_a) 504 504 187 328 196 0.3 079 158 157 493 stic ι) δ (ϵ_a)	σmax σmax 710 178 340 -603 435 -33 178 -536 707 Pro. σm	x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		27 Ea) 16 98 40 205 74 50 29 74 16	σma 709 6 322 -52 50 1 18 -47 72 Cycles uber	7 24 1 1 0 1 to fa FE.		$\%(\epsilon_a)$).435).127).264 0.218).257).042).118 0.183).428 (N _f) Pro.
1 2 3 4 5 6 7 8 9 8 9 8 9 8 9 8 9 1		ber's <u>% (</u> 0.3	$\begin{array}{c} \sigma_{\rm rr} \\ 69 \\ -11 \\ 300 \\ -52 \\ 490 \\ -7 \\ 177 \\ -47 \\ 711 \\ 3 \\ \epsilon_{\rm a} \\ 35 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	% 0 0 -0. 0.0 0.0 0. -0. 21as FEA 9 ((ϵ_a) 504 504 187 328 196 0.3 079 158 157 493 stic Δ δ (ϵ_a) 0.283	σmax σmax 710 178 340 -605 435 -33 178 -536 707 Pro. σm 90	x 5 5 5 Met % 0.	$\begin{array}{c} \% (0) \\ 0.4 \\ 0.0 \\ 0.2 \\ -0.2 \\ 0.2 \\ 0.0 \\ 0.1 \\ -0.1 \\ 0.4 \\ \end{array}$ thod $\begin{array}{c} (\epsilon_a) \\ .315 \end{array}$	ϵ_{a}) 16 98 40 205 74 50 29 74 16 Net 95	σma 709 6 32' -52 50 1 18 -47 72 Cycles uber 500	7 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\%(\epsilon_a)$ $\%(\epsilon_a)$ 0.435 0.127 0.264 0.218 0.257 0.042 0.118 0.183 0.428 (Nf) Pro. 20000
1 2 3 4 5 6 7 8 9 8 9 8 9 8 9 8 9 1 2		ber's % (0.3 0.0	σ_{rr} 69 -1 30 -52 49 -7 17 -47 71 -47 5 ϵ_{a} 35 71	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	% 0.: 0 -0. 0 0 -0. 0 2las 7EA 9 (0	(ϵ_a) 504 187 328 196 0.3 079 158 157 493 stic Δ δ (ϵ_a) 0.283 0.07	σmax σmax 710 178 340 -603 435 -33 178 -530 707 Pro. σm 90 165	Met	$ \frac{\%}{0.4} $ $ \frac{0.4}{0.0} $ $ \frac{0.2}{-0.2} $ $ \frac{0.2}{0.0} $ $ \frac{0.1}{0.4} $ $ \frac{0.4}{0.4} $	29 74 50 29 74 16 29 74 16 Net 95 0 0 0 0 0 0 0 0 0 0 0 0 0		$\frac{1}{2}$		$\%(\epsilon_a)$ $\%(\epsilon_a)$ 0.435 0.127 0.264 0.218 0.257 0.042 0.118 0.183 0.428 (Nf) Pro. 20000 ∞
1 2 3 4 5 6 7 8 9 8 9 8 9 8 9 8 9 8 9 1 2 3	$\begin{array}{c} 500 \\ 100 \\ 280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ \hline \\ 86 \\ 161 \\ 10 \\ \end{array}$	ber's % (0.3 0.0 0.1	$\begin{array}{c} \sigma_{\rm rr} \\ 69 \\ -1 \\ 30 \\ -52 \\ 49 \\ -7 \\ 17 \\ -47 \\ 71 \\ 3 \\ \hline \epsilon_{\rm a} \\ 35 \\ 71 \\ 3 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	% 0.: -0. 0.(0. 0. 0. -0. 0. 2las FEA 9 (((ϵ_a) 504 504 187 328 196 0.3 079 158 157 493 stic Δ 283 0.07 0.283 0.07 0.224	σmax σmax 710 178 340 -603 435 -33 178 -536 707 Pro. σm 90 165 16	A A B		$\frac{1}{\epsilon_{a}}$ 16 98 40 05 74 50 29 74 16 16 95 0 30	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$		$\%(\epsilon_a)$ $\%(\epsilon_a)$ 0.435 0.127 0.264 0.218 0.257 0.042 0.118 0.183 0.428 (Nf) Pro. 20000 ∞ 130000

Table 16 Results Obtained from RQC-100 under Variable Amplitudes

		Notc	h roa	ot stress	s-st	t <mark>rain f</mark> o	or SAE	1038	8 Stee	l flat	plate			
Dovorcol	S (M	Do)		Neube	er's		E-Plast	ic (F	FEA)			Pro	pose	d
Keversai	S_a (IVI)	r a)	σ_n	nax	%	(ϵ_a)	σ_{max}		%(€	a)	σ_{ma}	x	0	∕o(€a)
1	350)	53	30	0.′	788	532		0.66	55	565	5	().637
2	100)	-1	05	0.	.45	-149		0.35	53	-68		().310
3	280)	37	77	0.	.68	392		0.57	73	414	ŀ	().536
4	-240)	-4	65	-0.	402	-514		-0.32	28	-483	3	-(0.424
5	291	-	49) 0	0.5	598	529		0.50)3	519)	().489
6	40		-14	45	0.2	259	-169		0.19	95	-120)	().161
7	163	3	- 19) 0	0.4	413	214		0.34	15	215	5	().313
8	-220)	-4	50	-0.	352	-506		-0.2	86	-464	1	-(0.349
9	350)	53	32	0.′	748	544		0.65	51	568	8	().611
Rainflow	Neu	uber's	S	E-Pla	stic	c (FEA)	Pro	э. М	ethod		Cycle	s to f	failur	e (N _f)
cycles	σ _m (MPa)	%	(ϵ_a)	σ _m (MPa))	% (Ea)	σ_{m} (MP	a)	% (e	a) l	Neuber	F	FEA	Pro. M
1	33	0.	.595	9		0.496	40)	0.53	3	6900	12	2000	9400
2	136	0.	.114	122		0.11	16	0	0.11	3	∞		∞	∞
3	20	0.	.475	12		0.394	25	5	0.41	9	13100	23	3400	20000
4	23	0.	.077	23		0.075	45	5	0.07	6	∞		∞	∞
	1	Notch	1 roo	t stress	-sti	rain fo	r SAE1	038	Steel	rour	ıd bar			
Reversal	N S _a (M	Notch Pa)	1 r 001	t stress Neube	-sti er's	rain fo	r SAE1 N	038 Ionlii FE	Steel near A	rour	nd bar	Pro	posed	d
Reversal	S _a (M	Notch Pa)	ο ΓΟΟ	t stress Neube	-sti er's %	rain fo 5 (€a)	r SAE1 N o _{max}	038 Ionlii FE	Steel near A %(e	rour a)	nd bar _{oma}	Pro x	posec	$d_{0}(\epsilon_{a})$
Reversal	1 S _a (M 500	Notch Pa))	ο roo	t stress Neube nax 82	-sti er's % 0.	rain fo 5 (€a) 575	r SAE1 N _{Smax} 600	038 Ionlin FE	Steel near A %(e 0.45	roun (a) (56)	nd bar σma	Pro x	posec %	d ∕₀(€a)).493
Reversal	1 S _a (M 500 100	Notch Pa)))	σ _r 5 -1	t stress Neube nax 82 06	-str er's % 0.	rain fo (ε _a) 575 263	r <u>SAE1</u> Ν σ _{max} 600 -76	038 Ionlii FE	Steel near A %(e 0.4: 0.1:	rour (a) (56) (53)	nd bar σ _{ma} 609 -77	Pro	posec % (d ∕₀(€a)).493).184
Reversal 1 2 3	N S _a (M 500 100 280	Notch Pa)))	σ _r 51 -1 2	t stress Neube nax 82 06 16	-str er's % 0. 0.	rain for (ϵ_a) 5775 263 398	r SAE1 Ν σ _{max} 600 -76 275	038 Ionlin FE	Steel near A %(e 0.4: 0.1: 0.28	roui 56 53 38	nd bar σ _{ma} 609 -77 244	Pro	posec 9 ((d %(ε _a)).493).184).319
Reversal 1 2 3 4	1 S _a (M 500 100 280 -280	Notch Pa))) 0	σr 52 -1 2 -4	t stress Neube nax 82 06 16 65 65	-str er's % 0. 0. 0. 0.	ταίη for (ϵ _a) 5775 263 398 .203	r SAE1 Ν σ _{max} 600 -76 275 -500	038 Ionlin FE	Steel near A %(e 0.4: 0.1: 0.28 -0.1	roui 56 53 38 59	nd bar σ _{ma} 609 -77 244 -469	Pro	pposed 9 (((((d (ϵ_a) (.493) (.184) (.319) (.219)
Reversal 1 2 3 4 5	N S _a (M 500 100 280 -280 320	Notch Pa)))) 0	σr 51 -1 2 -4 4:	t stress Neube nax 82 06 1 16 5 50 2	-sti er's % 0. 0. 0. -0. 0.	(ϵ_a) 575 263 398 .203 327	r SAE1 Ν σ _{max} 600 -76 275 -500 465	038 Ionlin FE	Steel near A %(e 0.4! 0.2! -0.1 0.2!	rout 56 53 38 59 96	nd bar σ _{ma} 609 -77 244 -469 463	Pro	pposec ((((((d (ϵ_a) (.493) (.184) (.319) (.219) (.284)
Reversal 1 2 3 4 5 6	I S _a (M 500 100 280 -280 320 40	Notch Pa))))))	σ _r 53 -1 2 -4	t stress Neube nax 82 06 16 65 50 50 50 6	-sti er's % 0. 0. 0. 0. 0. 0. 0.	rain for (ϵ_a) 575 263 398 .203 327 117	r SAE1 Ν σ _{max} 600 -76 275 -500 465 -54	038 Ionlin FE	Steel near A %(e 0.4: 0.2: 0.2: -0.1 0.2: 0.2: 0.2:	rout 56 53 38 59 96 33	nd bar σ _{ma} 609 -77 244 -469 463 -38	Pro	pposec (((((((((((((((((((d (ϵ_a) (.493) (.184) (.319) (.219) (.284) (.073)
Reversal 1 2 3 4 5 6 7	N S _a (M 500 100 280 -280 320 40 140	Notch Pa))))))	σr 53 -11 2 -44 43 -45	t stress Neube 82 2 06 2 16 2 50 2 29 2	-str er's % 0. 0. 0. 0. 0. 0. 0.	cean cean (ϵ_a) 5 575 2 263 3 398 2 327 1 117 2 245 1	r SAE1 Ν σ _{max} 600 -76 275 -500 465 -54 158	038 Ionlin FE.	Steel near A %(e 0.4: 0.1: 0.2: -0.1 0.2: 0.0: 0.0: 0.1:	rout 56 53 38 59 96 33 58	nd bar σ _{ma} 609 -77 244 -469 463 -38 141	Pro	pposed (((((((((d (ϵ_a) (.493) (.184) (.319) (.219) (.219) (.284) (.073) (.183)
Reversal 1 2 3 4 5 6 7 8	N S _a (M 500 100 280 -280 320 40 140 -24	Notch Pa)))) 0)) 0)	σr σr 5% -1 2 -4 4 -5% 11 -4	t stress Neube 82 2 06 2 16 2 50 2 50 2 29 2 8	-sti er's % 0. 0. 0. 0. 0. 0. 0. 0.	rain for (ϵ_a) (ϵ_a) 575 (ϵ_a) 263 (ϵ_a) 398 (ϵ_a) .203 (ϵ_a) 327 (ϵ_a) 117 (ϵ_a) 245 (ϵ_a)	r SAE1 N	038 Ionlii FE	Steel near A %(¢ 0.4 0.1 0.2 0.1 0.2 0.0 0.0 0.1 0.1	rout 56 53 38 59 96 33 58 30	nd bar σ _{ma} 609 -77 244 -469 463 -38 141 -429	Pro	pposec (((((((((((((((((((d $\sqrt[6]{(\epsilon_a)}$ 0.493 0.184 0.319 0.219 0.284 0.073 0.183 0.175
Reversal 1 2 3 4 5 6 7 8 9	N S _a (M 500 100 280 -280 320 40 140 -240 500	Notel: Pa)))) 0)) 0))	σr σr 53 -11 2 -4 43 -5 -11 2 -4 59	t stress Neube 82 - 06 - 16 - 50 - 50 - 29 - 28 - 93 -	-str er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	rain formula (ϵ_a) 575 263 398 .203 327 117 245 .151 567	r SAE1 Ν σ _{max} 600 -76 275 -500 465 -54 158 -545 602	038 Ionlin FE.	Steel near A %(¢ 0.4; 0.1; 0.2; -0.1; 0.0; 0.0; 0.1; -0.1; 0.4;	rout 56 53 88 59 96 83 58 30 48	nd bar σma 609 -77 244 -469 463 -38 141 -429 618	Pro	pposed (((((((((((((((())))))))))))))	d (ϵ_a) (\cdot, ϵ_a) $(\cdot, $
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cvolos	Neu	Noteh Pa)))))))))))))))))))	$ \begin{array}{c} \sigma_{r} \\ 59 \\ -11 \\ 2 \\ -4 \\ 49 \\ -4 \\ 59 \\ 5 \end{array} $	t stress Neube 106 20 16 40 50 20 29 28 20 28 20 29 28 20 2	-sti er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 1as FEA	rain for (ϵ_a) 575 263 398 .203 327 117 245 .151 567 stic Δ)	r SAE1 N Gmax 600 -76 275 -500 465 -54 158 -545 602 Pro.	038 Ionlin FE.	Steel near A %(e 0.4: 0.1: 0.2: -0.1 0.2! 0.0! 0.1: -0.1 0.4: hod	roui 56 53 38 59 96 33 58 30 48	nd bar σ _{ma} 609 -77 244 -469 463 -38 141 -429 618 Cycles	Pro	posec (((((((((((((((((((d (ϵ_a) $(\lambda 493)$ $(\lambda 493)$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles	Image: S_a (M) S_a (M) 500 100 280 -280 320 40 140 -240 500 Neu σ_m	Noteh Pa)))) 0) 0) 0)) 0)) 0)) 0) 0	$ \begin{array}{c c} $	t stress Neube 82	-sti er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	rain for (ϵ_a) 575 263 398 .203 327 117 245 .151 567 stic X) $lash (\epsilon_a)$	r SAE1 Ν σ _{max} 600 -76 275 -500 465 -54 158 -545 602 Pro. σ _m	038 Ionlin FE.	Steel near A $\%(\epsilon$ 0.4: 0.1: 0.2: -0.1 0.2: 0.03 0.1: 0.2: 0.03 0.1: 0.2: 0.03 0.1: 0.4: hod (ϵ_a)	rout 56 53 88 59 96 83 58 30 48	nd bar σma 609 -77 244 -469 463 -38 141 -429 618 Cycles uber	Pro	posec (((((((((((((((((((d $\sqrt[6]{(\epsilon_a)}$ 0.493 0.184 0.319 0.219 0.284 0.073 0.175 0.488 (N_f) Pro.
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1	N S _a (M 500 100 280 -280 320 40 140 -240 500 Net σ _m 59	Noteh Pa))))) 0) 0) 0) 0) 0) 0) 0) 0	$ \begin{array}{c c} \overline{\sigma}_{r} \\ \overline{\sigma}_{r} \\ $	t stress Neube nax 82 06 16 65 50 50 29 28 93 E-F (F <u>σ_m</u> 35	-sti er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 20. 9 1as FEA	rain for (ϵ_a) 575 263 398 .203 327 117 245 .151 567 stic X) $\sqrt{6}$ (ϵ_a) 0.307	r SAE1 N Gmax 600 -76 275 -500 465 -54 158 -545 602 Pro. Gm 60	038 Ionlin FE.	Steel near A $\%(\epsilon$ 0.4: 0.1: 0.28 -0.1 0.29 0.08 0.15 -0.1 0.24 hod (ϵ_a) .35	rout 56 53 58 59 96 33 58 30 48 0 48	σma σma 609 -77 244 -469 463 -38 141 -429 618 Cycles uber 000	Pro	posec 9 (((((((((((((((((((d (ϵ_a) $(\lambda 493)$ $(\lambda 493)$ $(\lambda 493)$ $(\lambda 493)$ $(\lambda 493)$ $(\lambda 184)$ $(\lambda 19)$ $(\lambda 219)$ $(\lambda 219)$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2	$\begin{array}{c} I\\ S_a (M)\\ 500\\ 100\\ 280\\ -280\\ 320\\ 40\\ 140\\ -240\\ 500\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	Noteh Pa)))) 0) 0) 0)) 0) 0) 0) 0 0) (0.3) (0.06	$ \begin{array}{c c} $	t stress Neuber Neuber 10 16 16 16 16 16 16 16 16 16 29 28 93 E-F (F $\overline{\sigma_m}$ 35 100	-sti er'ss % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	rain for (ϵ_a) 575 263 398 .203 327 117 245 .151 567 stic Λ) $\sqrt{6}$ (ϵ_a) 0.307 0.068	r SAE1 Ν σ _{max} 600 -76 275 -500 465 -54 158 -545 602 Pro. σ _m 60 56	038 Ionlin FE.	Steel near A $\%(\epsilon$ 0.4: 0.1: 0.23 -0.1 0.29 0.08 0.11: -0.12 0.04 0.15 -0.11 0.44 hod (ϵ_a) .35 067	rout 5a) 56 53 88 59 96 83 58 30 48 (Net 19	nd bar σ_{ma} 609 -77 244 -469 463 -38 141 -423 618 Cycles uber 000 ∞	Pro	posed () () () () () () () () () () () () ()	d $((\epsilon_a))$ $(\lambda + 93)$ $(\lambda + 93)$ $(\lambda$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2 3	$\begin{array}{c} 1\\ S_a (M)\\ 500\\ 100\\ 280\\ -280\\ 320\\ 40\\ 140\\ -240\\ 500\\ \hline \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Notch Pa)))) 0) 0) 0) 0) 0) 0) 0 0 (0.3 0 (0.3 0 0.0 6 (0.2)	$ \begin{array}{c c} \hline r \\ $	t stress Neube nax 2 82 2 06 1 16 2 50 2 50 2 28 2 93 2 $E-F$ (F σ_m 35 100 -40	-sti er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	rain for (ϵ_a) 575 263 398 .203 327 117 245 .151 567 stic Λ) $lashift (\epsilon_a)$ 0.307 0.068 0.213	r SAE1 Ν σ _{max} 600 -76 275 -500 465 -54 158 -545 602 Pro. σ _m 60 56 12	038 Ionlii FE. Meth <u>%</u> 0.0 0.0	Steel near A $\%(\epsilon$ 0.43 0.14 0.28 -0.11 0.29 0.08 0.113 -0.29 0.013 -0.11 0.29 0.013 -0.11 0.44 hod (ϵ_a) .35 067 225	rout 53 55 53 58 59 96 33 58 30 48 0 48 0 19 0 0 120	σ_{ma} σ_{ma} 609 -77 244 -469 463 -38 141 -423 618 Cycles uber 000 ∞ 0000	Pro	posec 9 (((((((((((((((((((d $\sqrt[6]{(\epsilon_a)}$).493).184).319).219).284).073).183).175).488 (N _f) Pro. 28000 ∞ 155000

Table 17 Results Obtained from SAE1038 under Variable Amplitudes

	N	lotch	root	stress	-str	ain foi	r SAE1	050	M Ste	el fla	t plate			
Devenaal	S (M			Neub	er's		E-Plas	tic (FEA)			Pro	pose	d
Reversal	\mathbf{S}_{a} (IVI	Pa)	σ_{n}	nax	%	(ϵ_a)	σ_{max}	ζ.	%(e	a)	σ_{max}	x	0	$V_0(\epsilon_a)$
1	350)	58	33	0.7	776	591		0.63	39	610)	().648
2	100)	-8	37	0.4	431	-84		0.30)8	-51		().308
3	280)	40)4	0.6	574	440		0.54	46	439)		0.55
4	-240)	-5	17	-0.	324	-564	ł	-0.3	32	-530)	-1	0.340
5	291		54	40	0.6	556	581		0.49	90	564		().544
6	40		-1	30	0.	31	-108	3	0.15	58	-106	5	().202
7	163	3	20)5	0.4	475	253		0.32	20	228	;	().366
8	-220)	-5	00	-0.	265	-556	5	-0.2	90	-509)	-1	0.292
9	350)	58	34	0.8	325	601		0.62	26	615	i		0.68
Rainflow	Ne	uber'	S	E-Pla	astic	c (FEA	.) P	ro. N	/lethod		Cycle	s to f	failur	e (N _f)
cycles	σ _m (MPa)	%	$\epsilon(\epsilon_a)$	σ _m (MPa	a)	% (¢a	$(M) = \frac{\sigma_m}{(M)}$	Pa)	% (e	t _a) I	Neuber	F	ΈA	Pro. M
1	33	().55	14		0.48	3	4	0.49	9	5500	9	000	8100
2	159	0	.121	178	8	0.119) 10	52	0.12	1	∞		∞	∞
3	20	().46	13		0.39	2	0	0.4	1	10500	20	0000	16000
4	38	0.	0825	73		0.081	l 3	9	0.08	2	∞		∞	∞
	Ν	otch	root	stress-	stra	ain for	SAE1	0 5 0N	M Ste	el rou	ind bai	ſ		
Reversal	S _a (M	Pa)		Neub	er's		I	Nonl FE	inear EA			Pro	pose	d
			σι	nax	%	(ϵ_a)	σ_{max}	ĸ	%(Ea)	σ_{ma}	х	0	$\sqrt{o(\epsilon_a)}$
1	500)	6	40	0.:	565	660)	0.42	20	565	5	().483
2	100)	-7	70	0.2	239	-15		0.1	12	-45		().167
3	280)	2	52	0.	384	324		0.2	53	277	7	().308
4	-28	0	-5	15	-0.	195	-547	7	-0.1	17	-514	4	-(0.214
5	320)	4	80	0.	329	490		0.2	79	490)	().283
6	40		-2	20	0.	103	-88		0.0	58	51		(0.062
7	14()	1	59	0.	184	160		0.14	43	168	3	().141
8	-24	0	-4	70	-0.	152	-500)	-0.1	41	-46	5	_(0.177
			10						0.4		(7)	2	().476
9	500)	6	55	0.:	554	665		0.4	14	6/8)		
9 Rainflow	500 Net) iber's	6	55 E-i	0.: Plas FEA	554 stic	Pro.	Me	0.4 thod	14	Cycles	to fa	ilure	(N _f)
9 Rainflow cycles	500 Νει σ _m) 1ber's <u>%</u> (6. 5 (ε _a)	55 Ε-Ξ (J σ _m	0.: Plas FEA	$\frac{554}{\sqrt{6} (\epsilon_a)}$	$\begin{array}{c} 665\\ Pro.\\ \sigma_m \end{array}$	Met	thod $b (\epsilon_a)$	I4 Ne	Cycles uber	to fa FE	ilure A	(N _f) Pro.
9 Rainflow cycles	500 Νει σ _m 63) 1ber's <u>% (</u> 0.3	ϵ_{a}	55 Ε-Ξ (J σ _m 47	0 Plas FEA	554 etic A) $\sqrt[6]{6}(\epsilon_a)$ 0.295	665 Pro. σ _m 64	Met %	thod $\frac{1}{2} (\epsilon_a)$	14 Ne 16	Cycles uber 300	, to fa FE 400	ilure EA	(N _f) Pro. 25000
9 Rainflow cycles 1 2	500 Neu σ _m 63 91) 1ber's <u>% (</u> 0.3 0.07	$\frac{\epsilon_{a}}{\epsilon_{a}}$	55 Ε-Ξ (1) σ _m 47 155	0.: Plas FEA 9 ($\frac{554}{6}$ $\frac{1}{6}$ $$	665 Pro. σm 64 93	Met % (0.	0.4 thod $\frac{1}{2}(\epsilon_a)$ 0.34 0705	14 Net 16	Cycles uber 300 ∞	to fa FE 400	ilure ZA 000	(N _f) <u>Pro.</u> 25000 ∞
9 Rainflow cycles 1 2 3	500 Neu σ _m 63 91 5) 1ber's <u>% (</u> 0.3 0.07 0.2	ϵ_{a}) ϵ_{a}) ϵ_{a} ϵ_{a}) ϵ_{a} ϵ_{a}) ϵ_{a} ϵ_{a} ϵ_{a}) ϵ_{a}	55 Ε-: (] <u>σm</u> 47 155 -45	0.: Plas FEA 0	554 tric $\frac{1}{6}$	665 Pro. σm 64 93 6	Met 9% (0.	0.4 thod $\frac{1}{2}(\epsilon_a)$ 0.34 0705 0.23	14 Net 16 16	678 Cycles uber 300 ∞ 0000	y to fa FE 400 ∝ 450	ilure 2A 000 000	(N _f) Pro. 25000 ∞ 200000

Table 18 Results Obtained from SAE1050M under Variable Amplitudes

		Note	h roo	t stress	s-st	rain fo	or SAE	111	7 Stee	el flat	plate			
Devenaal	S (M			Neube	er's		E-Plast	tic (]	FEA)			Pro	posed	d
Keversai	S_a (IVII	Pa)	σ_n	Neuber Neuber σ_{max} σ_{max} σ_{max} σ_{max} σ_{max} 573 10^{-496} 30^{-75} 10^{-496} 30^{-75} 10^{-496} 30^{-75} 10^{-496} 30^{-75} 10^{-496} 30^{-75} 10^{-496} 30^{-75} 10^{-496} 30^{-75} 10^{-496} 30^{-75} 10^{-480} 30^{-75} 10^{-480} 30^{-75} 10^{-480} 30^{-75} 10^{-48} 10^{-7} 10^{-48} 10^{-7}		(ϵ_a)	σ_{max}		%(€	a)	σ_{ma}	х	0	$\sqrt{\epsilon_a}$
1	350)	57	73	0.	79	578		0.64	18	599)	().649
2	100)	-7	5	0.4	435	-98		0.31	17	-41		(0.302
3	280)	41	0	0.6	581	421		0.55	55	444	1	().546
4	-240)	-4	Neuber Neuber σ_{max} I σ_{73} I -75 I 410 I -496 I 525 I -130 I 205 I -480 I 573 I 6773 I 66 I 66 I 103 I		.41	-536		-0.34	41	-51	1		-404
5	291		52	Neuber σ_{max} 573 1 -75 1 410 1 -496 5 525 1 -130 205 -480 5 573 1 6 21 23 162 48 17 983 48 root stress σ_{max} 627 627 1 -73 247 -488 472 28 472		59	560		0.49	96	551	L	().492
6	40		-1.	Neuber Neuber σ_{max} σ_{max} 573 1 -75 1 410 -496 525 -130 205 -130 205 -480 573 2 -480 573 2 6 21 123 162 48 17 23 162 48 17 23 162 123 162 162 162 123 162 162 162 $700t$ $Strustrustrustrustrustrustrustrustrustrus$		229	-127		0.16	53	-10	6	().141
7	163		20)5	0.3	395	223		0.32	25	228	3	().306
8	-220)	-4	80	-0.	.37	-525		-0.3	02	-49	1	-(0.369
9	350		57	73	0.	76	581		0.63	38	596	5	().629
Rainflow	Nei	uber's	S	E-Pla	stic	: (FEA) Pi	o. N	/lethod		Cycle	s to	failur	e (N _f)
cycles	σ _m (MPa)	(% (€a)	σ _m (MPa))	% (¢a) σ_{m} (MF	Pa)	% (6	a)	Neubei	r]	FEA	Pro. M
1	39	(0.6	21		0.49	4	2	0.52	26	4800	1	1000	8500
2	168	0	.123	162		0.119) 20	00	0.12	22	∞		∞	∞
3	23	0).48	17		0.39	3	0	0.4	3	11700	2	25000	18000
4	38	0	.083	48		0.081	6	1	0.08	25	∞		∞	∞
	1	Notch	n root	t stress	-stı	rain fo	r SAE1	1117	/ Steel	rou	nd bar			
Reversal	S _a (M	Notch Pa)	n root	t stress Neube	-str er's	rain fo	r SAE1 N	l 117 Nonl FE	<mark>/ Steel</mark> inear EA	roui	nd bar	Pro	posed	đ
Reversal	N S _a (M	Notch Pa)		t stress Neube	-str er's %	rain fo (€a)	<u>r SAE</u> 1 Ν σ _{max}	l 117 Nonl FE	<mark>Steel</mark> inear EA %(e	roui	nd bar σ _{ma}	Pro	posec	d ⁄o(€a)
Reversal	N S _a (M 500	Notch Pa))	ο roo 1	t stress Neube nax 27	<u>-str</u> er's % 0.	(€a) .57	r SAE1 N Omax 660	III7 Nonl FE	Steel inear EA %(e 0.42	rou a) 27	nd bar o _{ma} 654	Pro	posed 9 (d ⁄₀(ϵ _a)).477
Reversal	N S _a (M 500 100	Notch Pa)))	σ r σ r 62	nax 73	-str er's % 0. 0.	(€a) (57 .24	r SAE1 Ν σ _{max} 660 -65	I117 Nonl FE	Steel inear EA %(e 0.42 0.12	Ea) 27 28	nd bar σ _{ma} 65 ² -48	Pro	posec 9 (1 $\sqrt[6]{6}(\epsilon_a)$ 0.477 0.158
Reversal 1 2 3	N S _a (M 500 100 280	Notch Pa)))	ο roo 1 σ _r 62 -7 22	Neubernax 27 13 47	-str er's % 0. 0.	(ε _a) .57 .24 385	r SAE1 N Omax 660 -65 317	I 117 Nonl FE	Steel inear EA 0.42 0.12 0.20	rou a) 27 28 51	nd bar σ _{ma} 65 ⁴ -48 272	Pro	pposed ((((d %(€ _a)).477).158).299
Reversal 1 2 3 4	N S _a (M 500 100 280 -280	Notch Pa)))))	σ r 62 -7 24 -4	stress Neube nax 27 73 47 88	-str er's % 0. 0. -0	 (€a) .57 .24 .385 .21 	r SAE1 Ν σ _{max} 660 -65 317 -500	I117 Nonl FE	V Steel inear EA %(e 0.42 0.12 0.20 -0.1	roui 27 28 51 67	nd bar σ _{ma} 65 ² -48 272 -48	Pro	pposed (((((1 (ϵ_a) (.477) (.158) (.299) (.234)
Reversal 1 2 3 4 5	N S _a (M 500 100 280 -280 320	Notch Pa)))))	σr σr 62 -7 22 -4 4	t stressNeubenax2773478872	-str er's % 0. 0. 0. -0 0.	(ε _a) .57 .24 385 .21 336	r SAE1 Ν σ _{max} 660 -65 317 -500 474	I 117 Nonl FE	V Steel inear EA 0.42 0.12 0.20 -0.1 0.23	roui 27 28 51 67 81	or σma σma 654 -48 272 -48 482	Pro	oposec 9 ((() () () ()	d $\sqrt[6]{(\epsilon_a)}$ 0.477 0.158 0.299 0.234 0.278
Reversal 1 2 3 4 5 6	P S _a (M 500 100 280 -280 320 40	Notch Pa)))))	σr 62 -7 24 -4 41	t stress Neube nax 27 73 47 888 72 28	-str er's % 0. 0. 0. 0.	 (€a) (a) (a)<!--</th--><th>r SAE1 Ν σ_{max} 660 -65 317 -500 474 -79</th><th>I 117 Nonl FE</th><th>Steel inear EA %(e 0.42 0.12 0.20 -0.1 0.23 0.00</th><th>roui 27 28 51 67 81 74</th><th>nd bar σ_{ma} 654 -48 272 -48 482 482</th><th>Pro</th><th>oposec 9 ((() () () () () () ()</th><th>1 (ϵ_a) (.477) (.158) (.299) (.234) (.278) (.056)</th>	r SAE1 Ν σ _{max} 660 -65 317 -500 474 -79	I 117 Nonl FE	Steel inear EA %(e 0.42 0.12 0.20 -0.1 0.23 0.00	roui 27 28 51 67 81 74	nd bar σ _{ma} 654 -48 272 -48 482 482	Pro	oposec 9 ((() () () () () () ()	1 (ϵ_a) (.477) (.158) (.299) (.234) (.278) (.056)
Reversal 1 2 3 4 5 6 7	N S _a (M 500 100 280 -280 320 40 140	Notch Pa))))))	σr σr 62 -77 24 -4 42 -2 12	stress Neube nax 27 73 47 88 72 28 51	-str er's % 0. 0. 0. 0. 0. 0. 0.	(ϵ_a) .57 .24 385 .21 336 108 189	r SAE1 Ν σmax 660 -65 317 -500 474 -79 100	I 117 Nonl FE	V Steel inear EA %(e 0.42 0.12 0.20 -0.1 0.22 0.07 0.14	roui 27 28 51 67 81 74 45	nd bar σ _{ma} 654 -48 272 -48 482 44 161	Pro	pposed () () () () () () () () () () () () ()	d (ϵ_a) (.477) (.158) (.299) (.234) (.278) (.056) (.135)
Reversal 1 2 3 4 5 6 7 8	N S _a (M 500 100 280 -280 320 40 140 -240	Notch Pa))))))))))	σr σr 62 -7 24 -4 42 -11 -4	stress Neube nax 27 73 47 88 72 28 51 42	-str er's % 0. 0. 0. 0. 0. 0. 0. -0.	cain fo (ϵ_a) .57 .24 385 .21 336 108 189 161	r SAE1 N Gmax 660 -65 317 -500 474 -79 100 -463	L117 FE	Steel inear EA %(e 0.42 0.12 0.20 -0.11 0.28 0.07 0.14 -0.1	roui 27 28 51 67 81 74 45 39	oma σma 654 -48 272 -48 482 44 161 -44	Pro	pposed ((((() () () () () () () () () () ()	d (ϵ_a) $(\lambda + 77)$ $(\lambda +$
Reversal 1 2 3 4 5 6 7 8 9	N S _a (M 500 100 280 -280 320 40 140 -240 500	Notch Pa))))))))))))	σr 62 -77 24 -4 12 -4 63	stress Neube nax 27 73 47 88 72 28 51 42 34	-sti er's % 0. 0. 0. 0. 0. 0. 0. 0.	cean cean (ϵ_a) .57 .24 .385 .21 .336 108 .189 161 .57	r SAE1 N Omax 660 -65 317 -500 474 -79 100 -463 665	L117 Nonl FE	Steel inear EA %(e 0.42 0.12 0.20 -0.1 0.22 0.07 0.14 -0.1 0.42	roui 27 28 51 67 81 74 45 39 22	orma σma 654 -48 272 -48 482 442 161 -44 660	Pro	pposed (((((((((((((((())))))))))))))	d $\sqrt[6]{(\epsilon_a)}$ 0.477 0.158 0.299 0.234 0.278 0.056 0.135 0.192 0.477
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cvoloc	N Sa (M 500 100 280 -280 320 40 140 -240 500 Neu	Notch Pa)))))))))))))))))))	$ \begin{array}{c c} \overline{\sigma}_{r} \\ \overline{\sigma}_{r} \\ $	stress Neube nax 27 73 47 88 72 28 51 42 34 E-F (F	-str er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 20. 0. 20. 2	(ϵ_a) .57 .24 385 .21 336 108 189 161 .57 .57	r SAE1 N Gmax 660 -65 317 -500 474 -79 100 -463 665 Pro.	Met	V Steel inear EA %(e 0.42 0.12 0.20 -0.1 0.23 0.07 0.14 -0.1 0.42	roui 27 28 51 67 81 74 45 39 22	nd bar σ _{ma} 654 -48 272 -48 482 44 161 -44 660 Cycles	Pro	pposed () () () () () () () () () () () () ()	$\begin{array}{c} 1 \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$
Reversal123456789Rainflow cycles	$\begin{array}{c} \mathbf{N} \\ \mathbf{S}_{a} (\mathbf{M}) \\ 500 \\ 100 \\ 280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ \mathbf{N}eu \\ \mathbf{\sigma}_{m} \end{array}$	Notch Pa)))))))))))))))))))	$ \begin{array}{c c} \overline{\sigma}_{r} \\ \overline{\sigma}_{r} \\ $	stress Neube nax 27 73 47 88 72 28 51 42 34 E-F (F σm	-str er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 20. 0. 20. 2	cain fo (ϵ_a) .57 .24 385 .21 336 108 189 161 .57 .51 .57 .56 .57 .57 .24 .57 .24 .57 .57 .57 .57 .57 .57 .57	r SAE1		Steel inear EA $\%(\epsilon$ 0.42 0.12 0.26 -0.1 0.26 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.42 thod $\phi(\epsilon_a)$	roui 27 28 51 67 31 74 45 39 22 22	σma σma 654 -48 272 -48 482 44 161 -44 660 Cycles uber	Pro	pposed () () () () () () () () () () () () ()	d $\sqrt[6]{(\epsilon_a)}$ 0.477 0.158 0.299 0.234 0.278 0.056 0.135 0.192 0.477 (N_f) Pro.
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1	N S _a (M 500 100 280 -280 320 40 140 -240 500 New σ _m 70	Notch Pa)))))))))))))))))))	$ \begin{array}{c c} & & & \\ &$	t stress Neube nax 27 73 47 88 5 47 88 72 2 28 5 51 42 34 $\overline{}$ E-F (F $\overline{}$ 80	-str er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20 0. 20 20 20 20 20 20 20 20 20 20 20 20 20	cean formula (ϵ_a) .57 .57 .24 .385 .21 .336 .108 108 .189 161 .57 .57 .24 .57 .24 .57 .24 .336 .21 .336 .57 .57 .57 .60 .57 .57 .24 .57 .57 .57<	r SAE1	III7 Nonl FE	Steel inear EA $\%(\epsilon$ 0.42 0.12 0.26 -0.1 0.22 0.0° 0.14 0.0° 0.14 0.0° 0.14 0.42 0.42 0.42 0.42 0.42 0.42 0.42	roui ^(a) 27 28 51 67 81 74 45 39 22 Ne 22	σma σma 654 -48 272 -48 482 44 161 -44 660 Cycles uber 000	Pro	pposed () () () () () () () () () () () () ()	$\frac{1}{6(\epsilon_a)}$).477).158).299).234).278).056).135).135).192).477 (N _f) Pro. 37000
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2	N S _a (M 500 100 280 -280 320 40 140 -240 500 New σ _m 70 87	Notel Pa)))))))))))))))))))	σ_r σ_r $6'_2$ $-7'_1$ $2'_4$ $4''_1$ $-2'_4$ $4''_1$ -4 $6''_2$	stress Neube nax 27 73 47 88 72 28 51 42 34 E-F (F σ_m 80 126	-str er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ceain fo (ϵ_a) .57 .24 385 .21 336 108 189 161 .57 .54 .57 .57 .57 .57 .536 .0297 .06665	r SAE1	1117 IVONI FE	Steel inear ΞA $\%(\epsilon$ 0.42 0.12 0.26 -0.1 0.26 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.07 0.14 0.14 0.42 0.07 0.555 0705	roui 27 28 51 67 81 74 45 39 22 Ne 22	σ_{ma} σ_{54} -48 272 -48 442 444 161 -44 660 Cycles uber 000 ∞	Pro	posed 9 () </th <th>$\frac{1}{\sqrt{6(\epsilon_a)}}$).477).158).299 0.234).278).056 0.135 0.192 0.477 (N_f) Pro. 37000 ∞</th>	$\frac{1}{\sqrt{6(\epsilon_a)}}$).477).158).299 0.234).278).056 0.135 0.192 0.477 (N _f) Pro. 37000 ∞
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2 3	$\begin{array}{c} \mathbf{N} \\ \mathbf{S}_{a} (\mathbf{M}) \\ 500 \\ 100 \\ 280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ \mathbf{N} \\ \mathbf{S} \\$	Notch Pa)))))))))))))))))))	σ_r σ_r $6?$ -7 2^4 -4 $4?$ -2 -4 $6?$ ϵ_a 39 725 48	stressNeubernax272727734788285128512851284234E-F(F σ_m 801266	-str er's % 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	cain fo (ϵ_a) .57 .24 385 .21 336 108 189 161 .57 .4 .57 .0207 0.0665 0.21	r SAE1	1117 INONI FE Mer 9 0 0 0 0 0 0 0	Steel inear EA $\%(\epsilon$ 0.42 0.12 0.2ϵ -0.11 0.2ϵ 0.0° 0.14 0.012 0.014 0.014 0.014 0.014 0.042 0.042 0.042 0.042 0.042 0.055 0.705 0.235	roui 27 28 51 67 81 74 45 39 22 Ne 22 18(σ_{ma} σ_{ma} 65^{2} -48 272 -48 442 442 660 Cycles uber 000 ∞ 0000	Pro	Prosect 9 ((() () () () () () () () () () () ()	d $\sqrt[6]{(\epsilon_a)}$ $(\lambda 477)$ $(\lambda 477)$ $(\lambda 77)$ $(\lambda 299)$ $(\lambda 158)$ $(\lambda $

Table 19 Results Obtained from SAE1117 under Variable Amplitudes

	l	Notch	n root	t stress	-str	rain fo	r SAE1	5V 2	24 Ste	el fla	t plate			
Devenael	S M	Da)		Neube	er's		E-Plast	ic (F	FEA)			Pro	pose	d
Keversai	S_a (IVI)	Pa)	σ_{m}	iax	%	(ϵ_a)	σ_{max}		%(€	a)	σ_{ma}	x	0	$\sqrt{\epsilon_a}$
1	350)	66	53	0.6	666	671		0.5	6	685	5	().573
2	100)	-1	4	0.3	344	-60		0.23	35	14		().244
3	280)	47	6	0.5	571	490		0.46	57	503	3	().480
4	-240)	-57	72	-0.3	334	-585		-0.2	98	-579)	-(0.343
5	291	-	60	6	0.:	52	625		0.47	77	624	ŀ	().452
6	40		-7	4	0.	18	-135		0.12	22	-56		().117
7	163	3	26	51	0.3	341	293		0.2	8	279)	().277
8	-220)	-55	50	-0.2	295	-565		-0.2	59	-554	1	-(0.310
9	350)	66	57	0.6	565	686		0.55	53	688	8	().572
Rainflow	Ne	uber's	s	E-Pla	stic	: (FEA) Pr	o. M	Iethod		Cycle	s to	failur	e (N _f)
cycles	σ _m (MPa)	%	$\epsilon(\epsilon_a)$	σ _m (MPa))	% (€a) σ_{m} (MF	Pa)	% (6	a)	Neuber	·I	FEA	Pro. M
1	46		0.5	11		0.429	9 4	7	0.45	58	5900	1	0300	8000
2	231	0	.118	188		0.116	5 23	6	0.1	2	∞		∞	∞
3	28	0	.407	13		0.353	3 2	9	0.38	31	12000	2	1500	17000
4	94	0.	0805	47		0.08	9	б	0.07	65	00		\sim	\sim
						0.00		0			30		\sim	\sim
	N	otch	root	stress-s	stra	ain for	SAE1	5V24	4 Stee	el rou	ind bai	•	~	
Reversal	N S _a (M	otch Pa)	root	stress-s Neube	stra er's	ain for	SAE1 E-Pl	5V24 astic	4 Stee c (FEA	el rou A)	ind bai	Pro	posed	d
Reversal	N S _a (M	otch Pa)	root σ _n	stress-s Neube	stra er's %	ain for (ϵ_a)	SAE15 E-Pl omax	5V24 astic	4 Stee c (FEA %(e	el rou A) Ea)	ind bar σma	Pro	pose	$\frac{1}{\sqrt{0}(\epsilon_a)}$
Reversal	N S _a (M 500	otch Pa)	root σ _n 64	stress-s Neube	stra er's % 0.	ain for (ϵ_a)	SAE13 E-Pl σ _{max} 655	5V24 astic	4 Stee c (FEA %(e 0.4	el rou A) Ea) 15	nd bar σ _{ma} 663	Pro	posec 9 (d $\%(\epsilon_a)$ 0.465
Reversal 1 2	N S _a (M 500 100	fotch Pa))	root σ _n 64 -6	stress-s Neube nax 40 59	stra er's % 0.2	(ε _a) 55 231	SAE15 E-Pl σ _{max} 655 -80	5V24 astic	4 Stee c (FEA %(e 0.4 0.09	el rou () () () () () () () () () ()	orma σ _{ma} 663 -44	Pro	posec of (d $\sqrt[6]{6}(\epsilon_a)$).465).158
Reversal 1 2 3	N S _a (M 500 100 280	fotch Pa)))	root σ _n 64 -6	stress-s Neube hax 40 59 54	stra er's % 0.2 0.2	(ϵ_a) 55 231 373	SAE15 E-Pl σ _{max} 655 -80 290	5V24 astic	4 Stee c (FEA %(e 0.4 0.09	el rou A) Ea) 15 98 38	σ ma 663 -44 279	Pro x 3	posec 9 ((()	d %(€a)).465).158).295
Reversal 1 2 3 4	N S _a (M 500 100 280 -28	fotch Pa)))) 0	root σ _n 64 -6 25 -50	stress-s Neube hax 40 59 54 06	stra er's % 0.2 0.2 -0.	(ϵ_a) 55 231 373 196	SAE13 E-Pl σmax 655 -80 290 525	5V24 astic	4 Stee c (FEA %(e 0.4 0.09 0.22 -20	el rou () () () () () () () () () ()	ord bar σma 663 -44 279 -50	Pro	posec 9 ((((d $\sqrt[6]{(\epsilon_a)}$).465).158).295 0.216
Reversal 1 2 3 4 5	N S _a (M 500 100 280 -280 320	fotch Pa))))) 0)	σn 64 -6 25 -50 47	stress-s Neube hax 40 54 54 06 79	stra er's % 0. 0.2 0.3 -0.	(ϵ_a) 55 231 373 196 318	SAE15 E-Pl σmax 655 -80 290 525 489	5V24 astic	4 Stee 2 (FEA %(e 0.4 0.09 0.22 -20 0.22	el rou (A) (Ea) (15) (28)	σma 663 -44 279 -500 489	Pro x 3 4 5 9	posec 9 ((((d $\%(\epsilon_a)$).465).158).295 0.216).271
Reversal 1 2 3 4 5 6	N S _a (M 500 100 280 -289 320 40	fotch Pa)))) 0)	root σ _n 64 -6 25 -50 47 -2	stress-s Neube hax 40 59 54 06 79 21	stra er's % 0.2 0.2 -0.3 0.3 0.0	(ϵ_a) 55 231 373 196 318 098	SAE13 E-Pl σmax 655 -80 290 525 489 -27	5V24 astic	4 Stee c (FEA %(e 0.4 0.09 0.22 -20 0.22 0.04	el rou () () () () () () () () () ()	omd bar σma 663 -44 279 -503 489 -12	Pro x 3 4 5 9	posec 9 (((((((($\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Reversal 1 2 3 4 5 6 7	N S _a (M 500 100 280 -280 320 40 140	fotch Pa))))))))))))))))	σn 64 -60 25 -50 47 -22 15	stress-s Neube nax 40 59 54 06 79 21 58	stra er's % 0.2 0.2 0.3 -0. 0.3 0.3 0.1	(ϵ_a) 55 231 373 196 318 098 176	SAE15 E-PI σmax 655 -80 290 525 489 -27 157	5V24 astic	4 Stee 2 (FEA %(e 0.4 0.09 0.22 -20 0.22 0.04 0.12	el rou () () () () () () () () () ()	σma σma 663 -44 279 -500 489 -12 167	Pro x 3 5 2 7	posec 9 ((((((((((((d $\%(\epsilon_a)$).465).158).295 0.216).271).056).132
Reversal 1 2 3 4 5 6 7 8	N S _a (M 500 100 280 -289 320 40 140 -24	fotch Pa)))))))))))))))))))	ΓΟΟΙ σ _n 64 -6 25 -50 47 -22 15 -40	stress-s Neube hax 40 59 54 06 79 21 58 61	stra er's % 0.2 0.3 -0. 0.3 0.0 0.1 -0.	ain for (ϵ_a) 55 231 373 196 318 098 176 153	SAE13 E-Pl	5V24 astic	4 Stee 2 (FEA %(e 0.4 0.09 0.22 -200 0.22 0.04 0.12 -0.11	el rou () () () () () () () () () ()	omd bar σma 663 -44 279 -503 489 -12 167 -453	Pro x 3 4 5 5 9 2 7 8	posec 9 (((((((((((((((((((d $\sqrt[6]{(\epsilon_a)}$ (.465) (.158) (.295) (.216) (.271) (.271) (.056) (.132) (.179)
Reversal 1 2 3 4 5 6 7 8 9	$\begin{array}{c} N \\ S_a (M \\ 500 \\ 100 \\ 280 \\ -28 \\ 320 \\ 40 \\ 140 \\ -24 \\ 500 \end{array}$	fotch Pa))	σn 64 -60 25 -50 47 -22 15 -40 655	stress-s Neuber nax 40 59 54 06 79 21 58 61 54	stra er's % 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ain for (ϵ_a) 55 231 373 196 318 098 176 153 536	SAE1 E-Pl σ _{max} 655 -80 290 525 489 -27 157 -482 657	astic	4 Stee 2 (FEA %(e 0.4 0.09 0.2 -20 0.2 0.04 0.11 -0.11 0.4	el rou (A) (a) (15) (28) (28) (28) (26) (26) (27) (13) (20) (21) (21) (22) (21) (2))	σma σma 663 -44 279 -503 489 -12 167 -455 676	Pro x 3 4 5 5 7 8 8	posec 9 ((((((((((((((((((($\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Reversal 1 2 3 4 5 6 7 8 9 Rainflow	N S _a (M 500 100 280 -289 320 40 140 -249 500 Neu	otch Pa))))) 0) 0) 0) 10) 0) 0) 0) uber's	σn 64 -6 25 -50 47 -22 15 -40 65	stress-s Neube nax 40 59 54 06 79 21 58 61 54 E-P (F	stra er's % 0.2 0.2 0.2 0.2 0.2 0.2 0.1 -0. 0.1 -0. 2 Plas EA	ain for (ϵ_a) 55 231 373 196 318 098 176 153 536 tic λ)	SAE1: E-Pl σ _{max} 655 -80 290 525 489 -27 157 -482 657 Pro.	5V24 aastic	4 Stee c (FEA %(e 0.4 0.09 0.22 -20 0.22 0.04 0.12 -0.1 0.4 hod	el rou () () () () () () () () () ()	σma σma 663 -44 279 -503 489 -12 167 676 Cycles	Pro x x 3 4 9 9 5 5 5 5 5 5 5 5 5 5 5	posec 9 (((((((((((((((((($\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles	N S _a (M 500 100 280 -28 320 40 140 -24 500 Net σ _m	otch Pa))))) 0)) 0) 0) 0) 0) </th <th>σ_n 64 -60 25 -50 47 -22 15 -40 65 ϵ_a</th> <th>stress-s Neuber nax 40 59 54 56 61 54 61 54 61 54 61 54 61 54 61 54 61 54 61 54 61 54</th> <th>stra 9% 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.5 Plas EA</th> <th>ain for (ϵ_a) 55 231 373 196 318 098 176 153 536 tic λ δ (ϵ_a)</th> <th>SAE1 E-Pl σmax 655 -80 290 525 489 -27 157 -482 657 Pro. σm</th> <th>SV24 aastic</th> <th>4 Stee 2 (FEA $\%(\epsilon$ 0.4 0.09 0.2 -20 0.2 0.04 0.12 -0.11 0.4 hod (ϵ_a)</th> <th>el rou (A) (A) (Ea) (15) (28)</th> <th>σma σma 663 -44 279 -503 489 -12 167 -455 676 Cycles uber</th> <th>Pro x 3 4 5 5 7 8 8 5 7 8 5 7 7 8 5 7 7 8 7 7 7 7</th> <th>posec 9 (((((((((((((((((((</th> <th>$\frac{1}{\sqrt{6}(\epsilon_{a})}$).465).158).295 0.216).271).056).132 0.179).457 (N_f) Pro.</th>	σ_n 64 -60 25 -50 47 -22 15 -40 65 ϵ_a	stress-s Neuber nax 40 59 54 56 61 54 61 54 61 54 61 54 61 54 61 54 61 54 61 54 61 54	stra 9% 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.5 Plas EA	ain for (ϵ_a) 55 231 373 196 318 098 176 153 536 tic λ δ (ϵ_a)	SAE1 E-Pl σmax 655 -80 290 525 489 -27 157 -482 657 Pro. σm	SV24 aastic	4 Stee 2 (FEA $\%(\epsilon$ 0.4 0.09 0.2 -20 0.2 0.04 0.12 -0.11 0.4 hod (ϵ_a)	el rou (A) (A) (Ea) (15) (28)	σma σma 663 -44 279 -503 489 -12 167 -455 676 Cycles uber	Pro x 3 4 5 5 7 8 8 5 7 8 5 7 7 8 5 7 7 8 7 7 7 7	posec 9 ((((((((((((((((((($\frac{1}{\sqrt{6}(\epsilon_{a})}$).465).158).295 0.216).271).056).132 0.179).457 (N _f) Pro.
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1	N S _a (M 500 100 280 -289 320 40 140 -249 500 Neu σ _m 67	otch Pa))))) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0) 0 0) 0) 0) 0) 0) 0) 0 0 0 0 0 0 0 0 0 0 0 0 0	σ_n 64 -6 25 -50 47 -22 15 -40 65 ϵ_a) 73	stress-s Neuber nax 10 ion 10 10 ion 10 10 10 ion 10 10 10 10 ion 10 10 10 10 ion 10 10 10 10 </th <th>stra % 0.2 0.3 -0. 0.3 0.1 -0. 0.1 -0. 2 Plas EA 9</th> <th>ain for (ϵ_a) 55 231 373 196 318 098 176 153 536 tic λ) δ (ϵ_a) 0.31</th> <th>SAE1: E-Pl σmax 655 -80 290 525 489 -27 157 -482 657 Pro. σm 79</th> <th>Solution of the second second</th> <th>4 Stee c (FEA %(ϵ 0.4 0.09 0.22 -200 0.22 -200 0.22 0.04 0.12 -0.11 0.4 hod (ϵ_a) 0.34</th> <th>el rou () () () () () () () () () ()</th> <th>σma 663 -44 279 -503 489 -12 167 676 Cycles uber 500</th> <th>Pro x 3 4 5 5 7 8 8 5 7 7 8 8 5 7 7 7 7 7 7 7 7 7</th> <th>posec 9 (((((((((((((((((((</th> <th>$\frac{1}{\sqrt{6(\epsilon_a)}}$ $\frac{1}{\sqrt{6(\epsilon_a)}}$</th>	stra % 0.2 0.3 -0. 0.3 0.1 -0. 0.1 -0. 2 Plas EA 9	ain for (ϵ_a) 55 231 373 196 318 098 176 153 536 tic λ) δ (ϵ_a) 0.31	SAE1: E-Pl σmax 655 -80 290 525 489 -27 157 -482 657 Pro. σm 79	Solution of the second	4 Stee c (FEA %(ϵ 0.4 0.09 0.22 -200 0.22 -200 0.22 0.04 0.12 -0.11 0.4 hod (ϵ_a) 0.34	el rou () () () () () () () () () ()	σma 663 -44 279 -503 489 -12 167 676 Cycles uber 500	Pro x 3 4 5 5 7 8 8 5 7 7 8 8 5 7 7 7 7 7 7 7 7 7	posec 9 ((((((((((((((((((($\frac{1}{\sqrt{6(\epsilon_a)}}$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2		otch Pa))))) 0) 0) 0) 0) 0) 0) 0) 0) 0 0 0.3 0.0	σ_n σ_n 64 -60 25 -50 47 -22 15 -40 65 ϵ_a) 73 71	stress-s Neuber nax 10 ion 105	stra % 0.2 0.2 0.2 -0. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0	ain for (ϵ_a) 55 231 373 196 318 098 176 153 536 tic λ) δ (ϵ_a) 0.31 0.07	SAE1 E-Pl σmax 655 -80 290 525 489 -27 157 -482 657 Pro. σm 79 115	5V24 aastic Met: % 0	4 Stee c (FEA $\%(\epsilon$ 0.4 0.09 0.2; -20 0.2 0.04 0.12 -0.1 0.4 hod (ϵ_a) 0.34 0685	el rou (A) (Ea) (Ca) (σ_{ma} σ_{ma} 663 -44 279 -503 489 -12 167 -453 676 Cycles uber 500 ∞	Pro x x 3 4 5 5 5 7 8 8 5 5 7 8 8 5 5 7 7 8 8 5 5 7 7 8 8 5 5 7 7 8 8 5 5 7 7 8 8 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	posec 9 ((((((((((((((((((($\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2 3	$\begin{array}{c} N \\ S_a (M \\ 500 \\ 100 \\ 280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ \hline \\ Neu \\ \hline \\ \sigma_m \\ 67 \\ 93 \\ 9 \\ \end{array}$	otch Pa))	σ_n 64 -60 25 -50 47 -22 15 -40 65 ϵ_a) 73 71 35	stress-s Neuber nax 10 iax 10 ion 4	stra % 0.2 0.3 -0. 0.3 -0. 0.1 0.1 -0. 0.1 Plas EA \$ EA \$ (ain for (ϵ_a) 55 231 373 196 318 098 176 153 536 tic λ) δ (ϵ_a) 0.31 0.07 0.224	SAE1 E-Pl σmax 655 -80 290 525 489 -27 157 -482 657 Pro. σm 79 115 5	5V24 astic	4 Stee 2 (FEA $\%(\epsilon$ 0.4 0.09 0.2 -20 0.2 -20 0.2 0.04 0.12 -0.1 0.4 hod $\phi(\epsilon_a)$ 0.34 0685 225	el rou () () () () () () () () () ()	σma σma 662 -44 279 -500 489 -12 167 -450 676 Cycles uber 500 ∞ 000	Pro x 3 4 5 5 7 8 8 5 7 7 8 8 5 7 7 8 8 5 7 7 8 5 7 7 8 5 5 7 7 8 5 5 7 7 8 5 5 7 7 7 8 8 5 5 7 7 7 7	posec 9 ((((((((((((((((((($\begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Table 20 Results Obtained from SAE15V24 under Variable Amplitudes

	Ν	otch	root	stress-	str	ain fo	r SA	AE1 1	141N	vb Ste	eel fla	nt plate	e		
D	с (л л			Neube	er's		E-P	Plasti	ic (F	EA)			Pro	pose	d
Keversal	\mathbf{S}_{a} (IVII	Pa)	$\sigma_{\rm rr}$	nax	%	(ϵ_a)	C	σ_{max}		%(e	a)	σ_{ma}	ıx	Ģ	$V_0(\epsilon_a)$
1	350)	55	54	0.	75	4	552		0.6	4	58	1		0.61
2	100)	-9	5	0.	42	-	-131		0.3	3	-59)	().287
3	280)	39	91	0.6	548	3	377		0.5	5	412	2	(0.513
4	-240)	-48	86	-0.	.39	-:	-500		-0.3	20	-50	2	-	0.385
5	291		51	4	0.	57	4	544		0.49	90	54	1	().468
6	40		-13	37	0.2	238	-	-151		0.18	31	-11	3	(0.143
7	163		19	98	0.3	392	2	204		0.33	32	222	2	().296
8	-220)	-40	68	-0.	.34	-4	-483		-0.2	80	-48	0	-	0.345
9	350)	55	59	0.	74	4	562		0.6	3	585	5	(0.603
Dainflow	Neu	uber's	S	E-Pla	stic	: (FEA	.)	Pro	o. M	ethod		Cycle	es to	failur	e (N _f)
cycles	σ _m (MPa)	(% (€a)	σ _m (MPa))	% (ε	a) (σ _m (MP	a)	% (e	E _a)	Neube	r 1	FEA	Pro. M
1	34	C).57	26		0.48		39)	0.4	9	5000	(9000	8200
2	148	C).11	123		0.11		16	6	0.11	3	∞		∞	x
3	23	0	.455	31		0.38		30)	0.4	ŀ	10000	1	9600	16000
4	31	0	.077	27		0.075	5	52	2	0.07	65	∞		∞	∞
	No	otch 1	root s	stress-s	stra	in for	SA	E114	41N	b Ste	el ro	und ba	r		
Reversal	No S. (M	otch 1 Pa)	root s	stress-s Neube	stra er's	in for	SA]	E114 E-Pla	41N astic	b Ste : (FEA	el ro A)	und ba	ır Pro	pose	d
Reversal	No S _a (Mi	otch 1 Pa)	root s	nax	stra er's %	in for (€a)	SAI I	E114 E-Pla σ _{max}	41N astic	b Ste (FEA %(e	el ro A) E _a)	und ba o _{ma}	nr Pro	pose	$d_{0}(\epsilon_{a})$
Reversal	No S _a (MI 500	o <mark>tch 1</mark> Pa)	root s σ _n 6(nax Neube	stra er's % 0.:	in for (€a) 563		E11 4 E-Pla σ _{max} 625	41N astic	b Ste (FEA %(e 0.42	el ro A) E _a) 26	und ba oma 62'	nr Pro ax 7	pose o	d ‰(€ _a)).464
Reversal 1 2	No S _a (M1 500 100	Pa)	σ n 6(-9	Neube nax 02 03	stra er's % 0.: 0.2	in for (€ _a) 563 253		E114 E-Pla σ _{max} 625 -60	41N astic	b Ste (FEA %(e 0.42 0.12	el ro A) E _a) 26 29	und ba σ _{ma} 62' -60	nr Pro ax 7	pose (d $\%(\epsilon_a)$).464).165
Reversal 1 2 3	No S _a (MI 500 100 280	Pa))))	σ n 60 -9 22	Neube nax D2 D3 29	er's % 0.: 0.2	in for (ε _a) 563 253 388		E114 E-Pla σ _{max} 625 -60 281	41N astic	b Ste (FEA %(e 0.42 0.12 0.20	el ro A) 26 29 60	und ba σ _{ma} 62' -60 250	nr Pro ax 7 5 6	ppose ((d ‰(€ _a)).464).165).296
Reversal 1 2 3 4	No S _a (MI 500 100 280 -280	btch i Pa))))	σ n 60 -9 22 -4	stress-sNeubenax02032976	stra er's % 0.: 0.2 0.2 -0.	in for (€ _a) 563 253 388 197	SAI CC C C	E114 E-Pla σ _{max} 625 -60 281 -495	41N astic	b Ste (FEA %(e 0.42 0.12 0.20 -15	el ro A) 26 29 50	und ba σ _{ma} 62' -66 250 -47	nr Pro ax 7 5 6 8	pposed ((((d $\%(\epsilon_a)$ 0.464 0.165 0.296 0.219
Reversal 1 2 3 4 5	No S _a (MI 500 100 280 -280 320	otch 1 Pa))))))	σn 60 -9 22 -4 45	stress-sNeubenax020303297659	er's % 0.1 0.2 0.3 -0.	in for (ε _a) 563 253 388 197 321		E114 E-Pla σmax 625 -60 281 -495 471	41N astic	b Ste : (FEA %(e 0.42 0.12 0.20 -15 0.20	el rov A) Ea) 26 29 50 51 56	oma 62' -66 250 -47 47	ar Pro ax 7 5 6 8 1	ppose (((((d $\%(\epsilon_a)$ 0.464 0.165 0.296 0.219 0.263
Reversal 1 2 3 4 5 6	No S _a (MI 500 100 280 -280 320 40	otch 1 Pa)))))))))))	σn 60 -9 22 -4 45	stress-s Neube nax 202 203 209 209 209 209 209 209 209 209 209 209	stra er's % 0.1 0.2 0.2 -0. 0.3	in for (ϵ_a) 563 253 388 197 321 111		E114 E-Pla σmax 625 -60 281 -495 471 -53	41N astic	b Stee : (FEA %(e 0.42 0.12 0.20 -15 0.20 0.00	el ro A) Ea) 26 29 60 51 56 17	oma 62' -60 250 -47 47 -30	ax 7 6 8 1 0	pposed (((((((((((((((((((d $\%(\epsilon_a)$ 0.464 0.165 0.296 0.219 0.263 0.058
Reversal 1 2 3 4 5 6 7	No S _a (MI 500 100 280 -280 320 40 140	btch 1 Pa)))))))))))))	σn 60 -9 22 -4 45 -4	Stress-s Neube nax 202 203 209 76 200 76 200	stra er's % 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2	in for (ε _a) 563 253 388 197 321 111 186		E114 E-Pla 625 -60 281 -495 471 -53 73	41N astic	b Ste c (FEA %(e 0.42 0.12 0.20 -15 0.20 0.00 0.12	el roi A) 26 29 60 61 66 97 39	oma 62' -66 250 -47 47 -30 14	Pro ax 7 6 8 1 0 9	ppose (((((((((((d $\%(\epsilon_a)$).464).165).296 0.219).263).058).131
Reversal 1 2 3 4 5 6 7 8	No S _a (MI 500 100 280 -280 320 40 140 -240	otch 1 Pa))))))))))))))))))	σn 60 -9 22 -4 45 -4 13 -4	stress-s Neuber nax D2 D3 D3 D3 D4 D5 D6 59 11 38 36	tra er's % 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	in for (ϵ_a) 563 253 388 197 321 111 186 149		E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452	41N astic	b Ste (FEA %(6 0.42 0.12 0.20 -15 0.20 0.00 0.12 -0.1	el ro A) Ea) 26 29 50 51 56 97 39 24	oma 62' -60 250 -47 47 -30 149 -43	Pro ax 7 5 6 8 1 0 9 5	pposed (((((((((((((((((((d $\%(\epsilon_a)$ 0.464 0.165 0.296 0.219 0.263 0.058 0.131 0.179
Reversal 1 2 3 4 5 6 7 8 9	No S _a (MI 500 100 280 -280 320 40 140 -240 500	btch 1 Pa))	σn 60 -9 22 -4 45 -4 13 -4 61	stress-s Neube nax 2 02 2 03 2 03 2 03 2 03 2 03 2 03 2 03 2 03 2 03 2 03 2 04 3 36 1	etra er's % 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$ \begin{array}{r} in for \\ (\epsilon_a) \\ 563 \\ 253 \\ 388 \\ 197 \\ 321 \\ 111 \\ 186 \\ 149 \\ 551 \\ \end{array} $		E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635	41N astic	b Ste (FEA %(c 0.42 0.12 0.24 -15 0.24 0.0 0.11 -0.1 0.44	$ \begin{array}{c} \text{rel ro} \\ \text{A} \\ \text{Z} \\ Z$	σma 62' -60 250 -47 47 -30 149 -43	Prc ax 7 5 6 8 1 0 9 5 9	ppose ((((((((((((((((((($\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow	No S _a (MI 500 100 280 -280 320 40 140 -240 500 Neu	otch 1 Pa))	σn 60 -9 22 -4 45 -4 13 -4 61	Stress-s Neuber nax 02 03 03 03 04 059 141 38 36 15 E-F (F	atra er's % 0.1	in for (ϵ_a) 563 253 388 197 321 111 186 149 551 ttic λ)	SAI I C C C C C C C C C C C C C C C C C C	E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. 1	41Ni astic	b Ste (FEA %(e 0.42 0.12 0.20 -15 0.20 0.00 0.11 -0.1 0.40 nod	el roi A) Ea) 26 29 60 61 66 97 39 24 02	σma 62' -60 250 -47 47 -30 149 -43 639 Cycles	Prc ax 7 6 8 1 0 9 5 9 to fa	ppose (((((((((((((((((((d $\%(\epsilon_a)$ 0.464 0.165 0.296 0.219 0.263 0.058 0.131 0.179 0.455 (N _f)
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles	No S _a (MI 500 100 280 -280 320 40 140 -240 500 Neu σm	otch 1 Pa))	σ_n σ_n 60 -9 22 -41 45 -41 61 5 ϵ_a	$ stress-s Neube nax 02 29 76 59 1 38 36 15 E-F (F \sigma_m $	atra er's % 0.1 0.2 0.3 0.1 0.2 0.3 0.4 0.5	in for (ϵ_a) (ϵ_a) (ϵ_a) (ϵ_a) (ϵ_a) (ϵ_a)	SA1 I C C C C C C C C C C C C C C C C C C	E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. I	41N astic	b Ste $(FEA)^{(6)}(\epsilon)^{(1)}($	el ro A) Ea) 26 29 50 51 56 97 39 24 02 Ne	σma 62' -60 250 -47 -30 149 -43 639 Cycles uber	Pro ax 7 5 6 8 1 0 9 5 9 to fa FE	ppose (((((((((((((((((((d $\sqrt[6]{(\epsilon_a)}$ \sqrt
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1	$\begin{tabular}{ c c c c c } \hline N & & \\ \hline S_a & (Ml) \\ \hline 500 \\ 100 \\ 280 \\ -280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ \hline 0 \\ 80 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	otch 1 Pa)) <th>σ_n σ_n 60 -9 22 -4 45 -4 13 -4 61 5 ϵ_a 38</th> <th>stress-s Neuber nax D2 D3 D3 D3 D4 D5 F Gm Gm 44</th> <th>atra er's % 0.1 0.2 0.3 0.4 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 1 0.3 1 1 1</th> <th>in for (ϵ_a) 563 253 388 197 321 111 186 149 551 <!--</th--><th>SA1 I C C C C C C C C C C C C C</th><th>E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. I σm 75</th><th>41N astic</th><th>b Ste c (FEA %(ϵ 0.42 0.12 0.20 -15 0.20 0.12 0.00 0.11 0.40 nod (ϵ_a) 341</th><th>el ro A) Ea) 26 29 50 51 56 66 17 39 24 02 Ne 15</th><th>oma 62' -66 250 -47 47 -30 149 -43 639 Cycles uber 000</th><th>Pro ax 7 5 6 8 1 0 9 5 9 5 9 to fa FE 400</th><th>pposed () () () () () () () () () () () () ()</th><th>$\frac{1}{\sqrt{6}(\epsilon_{a})}$ $\frac{1}$</th></th>	σ_n σ_n 60 -9 22 -4 45 -4 13 -4 61 5 ϵ_a 38	stress-s Neuber nax D2 D3 D3 D3 D4 D5 F Gm Gm 44	atra er's % 0.1 0.2 0.3 0.4 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 1 0.3 1 1 1	in for (ϵ_a) 563 253 388 197 321 111 186 149 551 </th <th>SA1 I C C C C C C C C C C C C C</th> <th>E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. I σm 75</th> <th>41N astic</th> <th>b Ste c (FEA %(ϵ 0.42 0.12 0.20 -15 0.20 0.12 0.00 0.11 0.40 nod (ϵ_a) 341</th> <th>el ro A) Ea) 26 29 50 51 56 66 17 39 24 02 Ne 15</th> <th>oma 62' -66 250 -47 47 -30 149 -43 639 Cycles uber 000</th> <th>Pro ax 7 5 6 8 1 0 9 5 9 5 9 to fa FE 400</th> <th>pposed () () () () () () () () () () () () ()</th> <th>$\frac{1}{\sqrt{6}(\epsilon_{a})}$ $\frac{1}$</th>	SA1 I C C C C C C C C C C C C C	E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. I σm 75	41N astic	b Ste c (FEA %(ϵ 0.42 0.12 0.20 -15 0.20 0.12 0.00 0.11 0.40 nod (ϵ_a) 341	el ro A) Ea) 26 29 50 51 56 66 17 39 24 02 Ne 15	oma 62' -66 250 -47 47 -30 149 -43 639 Cycles uber 000	Pro ax 7 5 6 8 1 0 9 5 9 5 9 to fa FE 400	pposed () () () () () () () () () () () () ()	$\frac{1}{\sqrt{6}(\epsilon_{a})}$ $\frac{1}$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2	$\begin{tabular}{ c c c c c } \hline N & & \\ \hline S_a & (M) \\ \hline 500 \\ \hline 100 \\ 280 \\ -280 \\ -280 \\ -280 \\ 0 \\ -240 \\ \hline 320 \\ 40 \\ 140 \\ -240 \\ \hline 500 \\ \hline \\ Neu \\ \hline $\sigma_m \\ 63 \\ 68 \\ \hline \end{tabular}$	otch 1 Pa)) <th>σ_n σ_n 60 -9 22 -4 45 -4 12 -4 61 5 ϵ_a 38 575</th> <th>stress-s Neube nax D2 D3 D2 D3 D4 D5 76 59 11 38 36 15 σ_m 44 111</th> <th>atra er's % 0.1 0.2 0.3 0.4 0.5 0.6 0.7 <!--</th--><th>in for (ϵ_a) $(\epsilon$</th><th>SA1 I C C C C C C C C C C C C C</th><th>E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. 1 σm 75 95</th><th>41N astic</th><th>b Ste c (FEA %(ϵ 0.42 0.12 0.20 -15 0.20 0.00 0.12 -0.1 0.40 nod (ϵ_a) 341 0655</th><th>el ro A) 26 29 50 51 56 97 39 24 92 24 92 15 15 15 15 15 15 15 15 15 15</th><th>oma σ_{ma} $62'$ -66 250 -47 47 -30 149 -43 639 Cycles uber 000 ∞</th><th>Prc ax 7 5 6 8 1 0 9 5 9 to fa FE 400</th><th>ppose (((((((((((((((((((</th><th>$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$</th></th>	σ_n σ_n 60 -9 22 -4 45 -4 12 -4 61 5 ϵ_a 38 575	stress-s Neube nax D2 D3 D2 D3 D4 D5 76 59 11 38 36 15 σ_m 44 111	atra er's % 0.1 0.2 0.3 0.4 0.5 0.6 0.7 </th <th>in for (ϵ_a) $(\epsilon$</th> <th>SA1 I C C C C C C C C C C C C C</th> <th>E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. 1 σm 75 95</th> <th>41N astic</th> <th>b Ste c (FEA %(ϵ 0.42 0.12 0.20 -15 0.20 0.00 0.12 -0.1 0.40 nod (ϵ_a) 341 0655</th> <th>el ro A) 26 29 50 51 56 97 39 24 92 24 92 15 15 15 15 15 15 15 15 15 15</th> <th>oma σ_{ma} $62'$ -66 250 -47 47 -30 149 -43 639 Cycles uber 000 ∞</th> <th>Prc ax 7 5 6 8 1 0 9 5 9 to fa FE 400</th> <th>ppose (((((((((((((((((((</th> <th>$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$</th>	in for (ϵ_a) $(\epsilon$	SA1 I C C C C C C C C C C C C C	E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. 1 σm 75 95	41N astic	b Ste c (FEA %(ϵ 0.42 0.12 0.20 -15 0.20 0.00 0.12 -0.1 0.40 nod (ϵ_a) 341 0655	el ro A) 26 29 50 51 56 97 39 24 92 24 92 15 15 15 15 15 15 15 15 15 15	oma σ_{ma} $62'$ -66 250 -47 47 -30 149 -43 639 Cycles uber 000 ∞	Prc ax 7 5 6 8 1 0 9 5 9 to fa FE 400	ppose ((((((((((((((((((($\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2 3	$\begin{tabular}{ c c c c c } \hline N & & \\ \hline S_a & (Ml) \\ \hline 500 \\ \hline 100 \\ 280 \\ -280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ \hline 0 \\ 80 \\ \hline 0 \\ 80 \\ \hline 0 \\ 80 \\ 12 \\ \hline \end{tabular}$	otch 1 Pa)) <th>σ_n σ_n 60 -9 22 -41 42 -41 -41 -42 -43 -575 325</th> <th>stress-s Neube nax D2 D3 D3 D3 D4 D59 11 38 36 15 σ_m 44 111 -41</th> <th>atra % 0.1 0.2 0.3 0.4 0.5 0.1 0.2 10 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 <th>in for (ϵ_a) $(\epsilon$</th><th>SA1 </th><th>E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. I 5m 75 95 18</th><th>41N astic Meth <u>%</u> 0.0 0.0</th><th>b Ste c (FEA %(ϵ 0.4: 0.1: 0.2: -15 0.2: 0.0: 0.1: -0.1: 0.4: nod (ϵ_a) 341 0655 .22</th><th>$\frac{1}{1.15}$</th><th>oma σ_{ma} 62' -66 250 -47 -47 -47 -43 63! Cycles uber 000 ∞ $5x10^5$</th><th>Pro ax 7 5 6 8 1 0 9 5 9 5 9 5 9 5 9 5 9 7 7 6 8 7 7 6 8 7 7 6 8 7 7 6 8 7 7 6 7 7 6 7 7 6 7 7 7 7</th><th>pposed ((((((((</th><th>$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$</th></th>	σ_n σ_n 60 -9 22 -41 42 -41 -41 -42 -43 -43 -43 -43 -43 -43 -43 -43 -43 -43 -43 -43 -43 -43 -43 -43 -575 325	stress-s Neube nax D2 D3 D3 D3 D4 D59 11 38 36 15 σ_m 44 111 -41	atra % 0.1 0.2 0.3 0.4 0.5 0.1 0.2 10 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 <th>in for (ϵ_a) $(\epsilon$</th> <th>SA1 </th> <th>E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. I 5m 75 95 18</th> <th>41N astic Meth <u>%</u> 0.0 0.0</th> <th>b Ste c (FEA %(ϵ 0.4: 0.1: 0.2: -15 0.2: 0.0: 0.1: -0.1: 0.4: nod (ϵ_a) 341 0655 .22</th> <th>$\frac{1}{1.15}$</th> <th>oma σ_{ma} 62' -66 250 -47 -47 -47 -43 63! Cycles uber 000 ∞ $5x10^5$</th> <th>Pro ax 7 5 6 8 1 0 9 5 9 5 9 5 9 5 9 5 9 7 7 6 8 7 7 6 8 7 7 6 8 7 7 6 8 7 7 6 7 7 6 7 7 6 7 7 7 7</th> <th>pposed ((((((((</th> <th>$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$</th>	in for (ϵ_a) $(\epsilon$	SA1 	E114 E-Pla σmax 625 -60 281 -495 471 -53 73 -452 635 Pro. I 5m 75 95 18	41N astic Meth <u>%</u> 0.0 0.0	b Ste c (FEA %(ϵ 0.4: 0.1: 0.2: -15 0.2: 0.0: 0.1: -0.1: 0.4: nod (ϵ_a) 341 0655 .22	$\frac{1}{1.15}$	oma σ_{ma} 62' -66 250 -47 -47 -47 -43 63! Cycles uber 000 ∞ $5x10^5$	Pro ax 7 5 6 8 1 0 9 5 9 5 9 5 9 5 9 5 9 7 7 6 8 7 7 6 8 7 7 6 8 7 7 6 8 7 7 6 7 7 6 7 7 6 7 7 7 7	pposed (((((((($\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

Table 21 Results Obtained from SAE1141Nb under Variable Amplitudes

		Notc	h roc	ot stres	s-st	t <mark>rain</mark> f	or SA	E 1	1045 St	teel fl	atj	plate			
Douoraal	S (M)	Da		Neube	er's		E-Pl	asti	c (FEA	()			Pro	posed	d
Keversal	\mathbf{S}_{a} (IVII	Pa)	$\sigma_{\rm m}$	nax	%	(ϵ_a)	$\sigma_{\rm r}$	nax	0	∕o(€a)		σ_{max}	ĸ	0	$\sqrt{(\epsilon_a)}$
1	350)	52	.9	0.8	326	53	80	().692		570		().665
2	100)	-9	6	0.4	471	-1	15	().372		-60		().322
3	280)	38	34	0.7	713	4()3	().602		421			0.56
4	-240)	-46	51	-0.4	424	-4	79	-(0.338		-479)		-411
5	291		48	36	0.6	536	50)2	().535		516		().516
6	40		-14	41	0.2	279	-1	54	().214		-116	5	().171
7	163		19	94	0.	44	19	02	().370		218		().330
8	-220)	-44	46	-0.3	364	-4	59	-(0.289		-461		-(0.364
9	350)	52	29	0.8	816	53	88	().690		570		().658
Rainflow	Nei	uber'	S	E-Pla	stic	: (FEA)	Pro	. Meth	nod		Cycles	s to :	failur	e (N _f)
cycles	σ _m (MPa)	%	$\epsilon(\epsilon_a)$	σ _m (MPa	.)	% (ε _a	(1)	n MPa	a) %	$o\left(\epsilon_{a}\right)$	١	Neuber	I	FEA	Pro. M
1	34	0	.625	25		0.515	5	46	C).538		4900	8	8000	7000
2	144	0	.121	144		0.115	5	160) ().119		∞		∞	∞
3	20		0.5	17		0.412	2	27		0.44		2800	1	4500	12000
4	27	0.	0805	14		0.078	3	45	0	.0795		∞		∞	x
	1	Notch	h rooi	t stress	s-sti	rain fo	or SA	E1(045 St	eel ro	un	d bar			
Reversal	I S₂ (M	Notcl Pa)	n rooi	t stress Neube	s-stu er's	rain fo	or SA E	E1(Pla	045 St stic (F	eel ro EA)	un	d bar	Pro	posed	ł
Reversal	I S _a (M	Notcl Pa)	n root σn	t stress Neube	s-sti er's %	rain fo (€a)	or SA Ε σι	E1 Planax	045 St stic (F	eel ro EA) ‰(€a)	un	d bar σ _{mav}	Pro	posec 9	1 ⁄₀(€a)
Reversal	S _a (M 500	Notcl Pa))	α root σ _n 56	t stress Neube nax 59	s-str er's % 0.6	rain fo (ε _a) 617	or SA Ε σ ₁	E1(-Pla nax)0	045 St stic (F	eel ro ΈΑ) ‰(ϵ _a)).482	un	d bar σ _{max} 602	Pro	posec 9 (1 $\sqrt[6]{(\epsilon_a)}$).508
Reversal 1 2	1 S _a (M 500 100	Notcl Pa))	ο roo σ _n 56 -10	t stress Neube nax 59 03	s-str er's % 0.0	rain fo (ε _a) 517 284	or SA E σ ₁ 6	E1(-Pla nax)0 38	045 St astic (F	eel ro ΈΑ) ‰(ε _a)).482).166		d bar σ _{max} 602 -74	Pro	posec % (1 $\%(\epsilon_a)$ 0.508 0.182
Reversal 1 2 3	1 S _a (M 500 100 280	Notcl Pa)))	σ n 56 -10	t stress Neube nax 59 03 19	s-sti er's % 0.6 0.2	(€a) 617 284 425	or SA E σ ₁ 6 ⁱ -{	E1(-Pla nax)0 38 50	045 Stinstic (F	eel ro EA) %(€a)).482).166).306		d bar σ _{ma} 602 -74 247	Pro	posec % (($\frac{1}{6(\epsilon_a)}$ 0.508 0.182 0.322
Reversal 1 2 3 4	1 S _a (M 500 100 280 -280	Notel Pa))))	σ _n 56 -10 21	t stress Neube nax 59 03 19 47	er's % 0.e 0.2 0.2 -0.	rain for (ϵ_a) 617 284 425 221 221	or SA E σ ₁ -{ 2. -4	E1(-Pla nax)0 38 50 90	045 Stic (F	eel ro ΈΑ) %(ε _a)).482).166).306 0.169	un	d bar σ _{max} 602 -74 247 -452	Pro	posec 9 (((($\frac{1}{6(\epsilon_a)}$ 0.508 0.182 0.322 0.252
Reversal 1 2 3 4 5	1 S _a (M 500 100 280 -280 320	Notel Pa)))))	σ n 56 -10 21 -44	t stress Neube nax 59 03 19 47 38	s-str er's % 0.6 0.2 0.2 -0.3	rain fo (ε _a) 517 284 425 221 349	or SA E σ ₁ -{ 2. -4	E1(-Pla nax)0 38 50 90 50	045 St astic (F (((((eel ro ΈA) %(ε _a)).482).166).306 0.169).306		d bar σ _{max} 602 -74 247 -452 452	Pro	posec ((((($\frac{1}{6(\epsilon_a)}$ 0.508 0.182 0.322 0.252 0.285
Reversal 1 2 3 4 5 6	1 S _a (M 500 100 280 -280 320 40	Notel Pa)))))	σn σ 56 -10 21 -44 43 -55	t stress Neube 59 03 19 47 38 52	s-sti er's % 0.6 0.2 0.2 -0.2 0.2 0.2	(ε _a) (ε _a) 517 284 425 221 349 129	or SA E σ ₁ -{ 2. -4 4	E1(-Pla nax)0 38 50 50 90 50 50	045 Sti Istic (F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eel ro ΈA) %(ϵ _a)).482).166).306 0.169).306).306	une	d bar σ _{max} 602 -74 247 -452 452 -40	Pro	posec 9 ((((((((($\frac{1}{6(\epsilon_a)}$ 0.508 0.182 0.322 0.252 0.285 0.064
Reversal 1 2 3 4 5 6 7	1 S _a (M 500 100 280 -280 320 40 140	Notel Pa))))))	σn σn 56 -10 21 -44 43 -55 12	t stress Neube nax 59 03 6 19 47 7 38 52 7	S-Sti er's % 0.6 0.2 0.4 -0.4 -0.4 0.3 0.1	(€a) (€a) 517 284 425 221 349 129 207	or SA E σ₁ 6 -2 -4 4 -(1	E1(Pla nax D0 88 50 90 50 59 55 55	045 St astic (F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eel ro EA) $%(\epsilon_a)$ $).482$ $).166$ $).306$ 0.169 $).306$ $).085$ $).162$		d bar σmax 602 -74 247 -452 452 -40 139	Pro	posec 9 (((((((((($\frac{1}{\sqrt{6(\epsilon_a)}}$).508).182).322).252).255).064).142
Reversal 1 2 3 4 5 6 7 8	1 S _a (M 500 100 280 -280 320 40 140 -240	Notel Pa)))))))))	σn σn 56 -10 21 -44 43 -55 12 -4	stress Neube nax 59 03 19 47 38 52 27 12	sti er's % 0.6 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 -0.	rain fo (ϵ_a) 517 284 425 221 349 129 207 169	or SA E σ ₁ -{ 2 -4 4 -4 -4 -4	E1(-Pla nax 00 38 50 90 50 50 55 75	045 St astic (F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eel ro EA) $%(\epsilon_a)$ 0.482 0.166 0.306 0.306 0.306 0.306 0.306 0.169 0.306 0.162 0.139		d bar σmax 602 -74 247 -452 452 -40 139 -414	Pro	pposec ((((((((((((((((((($\frac{1}{6(\epsilon_a)}$ 0.508 0.182 0.322 0.252 0.285 0.064 0.142 0.207
Reversal 1 2 3 4 5 6 7 8 9	1 S _a (M 500 100 280 -280 320 40 140 -240 500	Notel Pa)))))))))	σn σn 56 -10 21 -44 43 -55 12 -4 57	t stress Neube nax 59 03 19 47 38 52 27 12 76	sti er's % 0.6 0.2 0.2 -0.1 0.1 0.2 -0.2 -0.2 -0.0	rain for (ϵ_a) 517 284 425 221 349 129 207 169 $.6$	r SA E σ ₁ -{ 2. -4 4 -(1. -4 -4	E1(-Pla nax 00 38 50 90 50 50 55 55 75 03	045 St astic (F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eel ro EA) $%(\epsilon_a)$ $).482$ $).166$ $).306$ 0.306 $).306$ $).085$ $).162$ 0.139 $).475$		d bar σmax 602 -74 247 -452 452 -40 139 -414 608	Pro	posec 9 ((((((((((((((((((($\frac{1}{\sqrt{6(\epsilon_a)}}$).508).182).322).252).255).064).142).207).497
Reversal 1 2 3 4 5 6 7 8 9 Rainflow	1 S _a (M 500 100 280 -280 320 40 140 -240 500 Neu	Notel Pa)))))))))))))))))))	σn 56 -10 21 -44 43 -55 12 -4 57 5	t stress Neube nax 59 03 19 47 38 52 27 12 76 E-H (H)		rain fo (ϵ_a) 517 284 425 221 349 129 207 169 0.6 Δ	P	E1(-Pla nax D0 88 50 90 50 55 75 75 03 	045 St stic (F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eel ro EA) $%(\epsilon_a)$ $).482$ $).166$ $).306$ 0.306 0.306 0.306 0.306 0.306 0.306 0.169 0.306 0.306 0.162 0.139 0.475		d bar σ _{max} 602 -74 247 -452 452 -40 139 -414 608 Cycles	Pro	posec ((((((((((((() ((((($\frac{1}{6(\epsilon_a)}$ 0.508 0.182 0.322 0.252 0.252 0.064 0.142 0.207 0.497 (N _f)
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles	Image: Sa (Minor) Sa (Minor) 500 100 280 -280 320 40 140 -240 500 Neu σm	Notel Pa)))))))))))))))))))	$\begin{array}{c c} \sigma_{n} \\ \hline \sigma_{n} \\ 56 \\ -10 \\ 21 \\ -44 \\ 43 \\ -55 \\ 12 \\ -4 \\ 57 \\ 8 \\ \epsilon_{a} \end{array}$	t stress Neube nax 59 03 19 47 38 52 27 12 76 E-H (F σm		rain fo (ϵ_a) 617 284 425 221 349 129 207 169 0.6 stic Λ) $lash(\epsilon_a)$	or SA E σ₁ 60 { 2. 4 40 4 60 P1 σ₁ σ₁	E1(-Pla nax 00 88 50 90 50 50 55 55 75 03 ro. N	$\begin{array}{c c} 0.45 \text{ St}\\ \hline \text{astic (F}\\ \hline 0.000\\ \hline $	eel ro EA) $%(\epsilon_a)$ $).482$ $).166$ $).306$ 0.169 $).306$ $).306$ $).306$ $).162$ $).163$ $).163$ $).163$ $$	Uneu la	d bar σmax 602 -74 247 -452 452 -40 139 -414 608 Cycles f iber	Pro	posec 9 (((((((((((((((((($\frac{1}{6(\epsilon_a)}$ 0.508 0.182 0.322 0.252 0.252 0.285 0.064 0.142 0.207 0.497 (N _f) Pro.
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1		Notel Pa)))))))))))))))))))	$\begin{array}{c c} \sigma_{n} \\ \hline \sigma_{n} \\ 56 \\ -10 \\ 21 \\ -44 \\ 43 \\ -55 \\ 12 \\ -4 \\ 57 \\ 6 \\ \epsilon_{a} \\ 19 \end{array}$	t stressNeubernax590319473852271276E-H (F σ_m 55	s-sti er's % 0.c 0.1 0.2 -0.1 0.1 0.1 0.2 Plass FEA % 0	rain fo (ϵ_a) 517 517 284 425 221 349 129 207 169 .6 xtic λ) $\sqrt[6]{6}$ (ϵ_a) 0.326	or SA E σ₁ 6 -8 2 -4 4 -6 11 -4 6 P1 σ₁ 75	E1(-Pla nax 00 38 50 90 50 55 55 75 03 ro. N n 5 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c c} 045 \text{ St} \\ \text{astic (F} \\ 0.00 \\ $	eel ro EA) $%(\epsilon_a)$ 0.482 0.166 0.306 0.306 0.306 0.306 0.306 0.169 0.306 0.1306 0.1306 0.1475 1 h h h		d bar σmax 602 -74 247 -452 452 -40 139 -414 608 Cycles ber 000	Pro x 2 2 2 2 4 4 5 5 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	posec 9 (((((((((((((((((($\frac{1}{6(\epsilon_a)}$ 0.508 0.182 0.322 0.252 0.285 0.064 0.142 0.207 0.497 (N _f) Pro. 15000
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2		Notel Pa)))))))))))))))))))	$\begin{array}{c c} \sigma_{n} \\ \hline \sigma_{n} \\ 56 \\ -10 \\ 21 \\ -41 \\ 43 \\ -55 \\ 12 \\ -44 \\ 57 \\ 6 \\ \hline \epsilon_{a} \\ 19 \\ 705 \\ \end{array}$	t stressNeubenax590319473852271276E-H σ_m 5581		rain fo (ϵ_a) 617 284 425 221 349 129 207 169 .6 stic Λ) $lacksymbol{\lambda}$ 0.326 0.073	$ \begin{array}{c} $	E1(-Pla nax 00 38 50 90 50 55 75 55 75 03 ro. N n 5 7	$\begin{array}{c c} 045 \text{ St} \\ \text{stic (F)} \\ \hline 0000 \\ \hline 0$	eel ro EA) $%(\epsilon_a)$ $).482$ $).166$ $).306$ 0.169 $).306$ $).306$ $).085$ $).162$ 0.139 $).475$ 1 $))$ $))$ $))$ $))$		d bar σmax 602 -74 247 -452 452 -40 139 -414 608 Cycles 1 1ber 000 φ	Pro x 2 2 2 2 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	posec 9 ((() () () () () () () () () () () ()	$\frac{1}{\sqrt{6(\epsilon_a)}}$ 0.508 0.182 0.322 0.252 0.252 0.064 0.142 0.207 0.497 (N _f) Pro. 15000 ∞
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2 3	$\begin{array}{c} 1\\ S_a (M)\\ 500\\ 100\\ 280\\ -280\\ 320\\ 40\\ 140\\ -240\\ 500\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Notel Pa)))))))))))))))))))	$\begin{array}{c c} \sigma_{n} \\ \hline \sigma_{n} \\ \hline 56 \\ -10 \\ 21 \\ -44 \\ 43 \\ -55 \\ 12 \\ -4 \\ 57 \\ \hline 57 \\ \hline \\ 6_{a} \\ 19 \\ 705 \\ 59 \\ \end{array}$	t stressNeubenax59590319473852271276 E -H $CT(F)\sigma_m5581-8$	s-sti er's % 0.c 0.1 0.2 0.4 -0.1 0.1 0.2 0.4 -0.1 0.2 0.3 0.4 -0.1 0.2 -0.2 0.3 0.4 0.5 Plass FEA 9 0 0	rain fo (ϵ_a) 517 584 425 221 349 129 207 169 0.6 wtic λ) $lash (\epsilon_a)$ 0.3226 0.073 0.222	$\begin{array}{c c} \mathbf{r} & \mathbf{SA} \\ \mathbf{E} \\ \mathbf{\sigma}_{\mathbf{I}} \\ 0 \\$	E1(-Pla nax 00 38 50 90 50 55 75 03 ro. N 	045 St astic (F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	eel ro EA) $%(\epsilon_a)$ 0.482 0.166 0.306 0.306 0.306 0.306 0.169 0.306 0.162 0.139 0.475 1 0.475 1 0.5		d bar σmax 602 -74 247 -452 452 -40 139 -414 608 Cycles ber 000 ∞ 000	Pro x 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	posec 9 ((((((((((((((((((($\begin{array}{c} 1 \\ \hline ((\epsilon_a)) \\ 0.508 \\ 0.182 \\ 0.322 \\ 0.252 \\ 0.252 \\ 0.285 \\ 0.064 \\ 0.142 \\ 0.207 \\ 0.497 \\ \hline (N_f) \\ \hline Pro. \\ 15000 \\ \hline \infty \\ 60000 \\ \end{array}$

Table 22 Results Obtained from SAE1045 under Variable Amplitudes

		Notch root stress-strain for SAE1141 Steel flat plate													
Reversal S (MPa)		Neuber's				E-Plastic (FEA)				Proposed					
Keversal	S_a (MPa)		σ_n	nax	% (c _a)		σ_{max}		%(€a)		σ_{max}		- %(ε _a)		
1	350		63	34	0.63		649		0.52	27	656		0.539		
2	100		-4	4	0.33		-40		0.23	33 -1		3 ().241	
3	280		45	51	0.55		475		0.44	45	481		0.459		
4	-240		-5:	59	-0.33		-581		-0.2	88	-567		-0.380		
5	291		58	36	0.49		600		0.4	4	606		0.372		
6	40		-8	37	0.19		-52		0.1	0.118		8	0.074		
7	163		25	53	0.34		271		0.20	0.262		2	0.222		
8	-220		-5	38	-0.27		-553		-0.2	-0.254		-543		-0.333	
9	350		637		0.64		648	648		0.530		658		0.494	
Deinflow	Neuber' σ_{m} (MPa)		S	E-Pla	Plastic (FEA) P	Pro. M			Cycles to		failure (N _f)		
cycles			% (€a)	σ _m (MPa)		% (ε	$(M) = \frac{\sigma_m}{M}$	σ _m (MPa)		(a)	Neuber	r I	FEA	Pro. M	
1	38	0).48	34		0.404	1 4	45		5	7200 1		4800	9500	
2	204)4 0.		218	0.106		5 2	227)9 o			∞	x	
3	24	4 0.3		.38 26		0.334	1 3	31		5 18500		35500		27000	
4	83	0.075		110		0.072	2 1	103		'4	8	x		8	
		_		-		0.011	-	05	0.01	•					
	N	otch	root	stress-s	stra	ain for	SAE1	141.	A2 Ste	el rou	und ba	r			
Povorsal	N S (M	otch	root	stress-s Neube	stra er's	ain for	SAE1 E-F	141. Plast	A2 Ste	el rou A)	und ba	r Pro	posed	d	
Reversal	N S _a (M	otch Pa)	root : σ _r	stress-s Neube	stra er's %	ain for (ϵ_a)	SAE1 E-F σ _{ma}	141. 'last _x	A2 Ste ic (FEA %(e	el rou A) a)	and ba	r Pro	pose	$d_{0}(\epsilon_{a})$	
Reversal 1	N S _a (M 500	otch Pa))	root σ _r	stress-s Neube nax 96	stra er's % 0.:	(ϵ_a)	SAE1 E-F σ _{ma} 740	141. Plast x	A2 Steric (FEA %(e 0.3	el rou A) E _a) 84	und ba σ _{ma} 710	r Pro ^{1x} 5	posec 9	d (ϵ_a)	
Reversal 1 2	N S _a (M 500 100	otch Pa))	root	stress-s Neube nax 96	stra er's % 0.:	(€ _a) 506 218	SAE1 E-F σ _{ma} 74(18	141. Plast x)	A2 Ste ic (FEA %(e 0.3 0.0	el rou () () () () () () () () () ()	und ba σ _{ma} 710 3	r Pro ^{1x} 5	posec 9 (d ‰(€ _a)).443).154	
Reversal 1 2 3	N S _a (M 500 100 280	otch Pa)))	root : σ _r 69 -1 30	Stress-s Neube nax 96 17 03	stra er's % 0.1 0.2	(€a) 506 218 346	SAE1 E-F σ _{ma} 74(18 363	141. Plast x	A2 Ste ic (FEA %(e 0.3) 0.00 0.22	el rou A) E _a) 84 93 23	ond ba σ _{ma} 710 3 323	r Pro ^{1x} 5	posed ((d $\%(\epsilon_a)$).443).154).282	
Reversal 1 2 3 4	Na Sa (M 500 100 280 -280	otch Pa))))	root : σ _r 69 -1 30 -5	stress-s Neube nax 96 17 03 22	stra er's % 0.1 0.2 0.3	(ϵ_a) 506 218 346 138	SAE1 E-F σma 74(18 363 -55(141. Plast x)	A2 Ste ic (FEA %(0 0.3) 0.0) 0.22 -0.1	el rou A) Ea) 84 93 23 83	oma σma 710 3 322 -52	r Pro ^{1x} 5 3 0	posec 9 (((((d $\sqrt[6]{(\epsilon_a)}$).443).154).282 0.174	
Reversal 1 2 3 4 5	N S _a (M 500 100 280 -280 320	otch Pa))))))	root σ _r 69 -1 30 -5 50	stress-s Neube nax 96 17 03 22 03	stra er's % 0.1 0.2 0.2 -0.	(ϵ_a) 506 218 346 138 312	SAE1 E-F σma 74(18 363 -550 52(141. Plast x))	A2 Stee ic (FEA %(a 0.3 0.0 0.2 -0.1 0.2	el rou () () () () () () () () () ()	oma σma 710 3 322 -52 510	r Pro	posec 9 ((((($\frac{1}{6}$	
Reversal 1 2 3 4 5 6	No Sa (M 500 100 280 -280 320 40	otch Pa))))))	σr σr 69 -1 30 -5 50	stress-s Neube nax 96 17 03 22 03 3	stra er's % 0.1 0.2 0.2 -0. 0.3	(ϵ_a) (SAE1 E-F σma 740 18 363 -550 520 -55	141 Plast x))	A2 Ste ic (FEA %(0 0.3 0.0 0.2 -0.1 0.2 0.0	el rou (A) Ea) 84 93 23 83 54 48	σma σma 710 3 323 -52 510 10	r Pro 1x 5 3 0 0	posec 9 (((((((((d $\sqrt[6]{(\epsilon_a)}$ 0.443 0.154 0.282 0.174 0.271 0.069	
Reversal 1 2 3 4 5 6 7	N S _a (M 500 100 280 -280 320 40 140	otch Pa)))))))	root σ _r 69 -1 30 -5 50 18	stress-s Neube nax 96 17 03 22 03 3 82	stra er's % 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	in for (ϵ_a) 506 218 346 138 312 112 184	SAE1 E-F oma 74(18 363 -55(52(-55 159	141. Plast x))	A2 Stee ic (FEA %((0.3) 0.2) -0.1 0.2) 0.0 0.2)	el rou A) Ea) 84 93 23 83 54 48 21	oma σma 710 3 322 -52 510 10 189	r Pro ix 5 3 0 0 0	pposec 9 ((((((((((((((d $\sqrt[6]{(\epsilon_a)}$).443).154).282 0.174).271).069).141	
Reversal 1 2 3 4 5 6 7 8	N S _a (M 500 100 280 -280 320 40 140 -240	otch Pa))))))))	σr 69 -1 30 -5 50 11 -4	stress-s Neube nax 96 17 03 22 03 3 82 69	stra er's % 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	(ϵ_{a}) (ϵ_{a}) ($\epsilon_{$	SAE1 E-F σma 740 18 363 -550 520 -55 159 -492	141 last x)))) 2	A2 Ste ic (FEA %(e 0.3 0.0 0.2 -0.1 0.2 0.0 0.1 -0.1	$ \begin{array}{c} el rot \\ el rot \\ A) \\ a4 \\ a3 \\ a3 \\ c3 \\ c4 \\ c4 \\ c1 \\ c5 \\ c6 \\ c5 \\ $	σma σma 710 3 32: -52 510 10 189 -46	r Pro	posed ((((((((((((((((((($\frac{1}{\sqrt{6(\epsilon_a)}}$ $\frac{1}{6(\epsilon$	
Reversal 1 2 3 4 5 6 7 8 9	N S _a (M 500 100 280 -280 320 40 140 -240 500	otch Pa))))))))))))	root σr 69 -1 30 -55 50 18 -4	stress-s Neube nax 96 17 93 22 03 82 69 14	stra er's % 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	in for (ϵ_a) 506 218 346 138 312 112 184 103 487	SAE1 E-F oma 74(18 363 -550 520 -555 159 -492 743	141 141 1ast x) ;))) 2 ;	A2 Stee ic (FEA %(e 0.3 0.0 0.2 -0.1 0.2 0.0 0.1 0.1 -0.1 0.3	el rou () () () () () () () () () ()	σma σma 710 3 322 -52 510 100 189 -46 732	r Pro	posec 9 ((((((((((((((((((($\frac{1}{6}$ $\frac{1}$	
Reversal 1 2 3 4 5 6 7 8 9	N S _a (M 500 100 280 -280 320 40 140 -240 500 Neu	otch Pa)))))))))))))))))))	root :	stress-s Neube nax 96 17 93 22 03 82 69 14 E-F (F	stra er's % 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 Plas	(ϵ_a) (ϵ_a) 506 218 346 138 312 112 184 103 487 Δ	SAE1 E-F oma 74(18 363 -550 520 -55 159 -492 743 Pro	141) Plast x)))) 2 ; . Me	A2 Ste ic (FEA %(0.3 0.0 0.2 -0.1 0.2 0.0 0.1 -0.1 0.3 ethod	el rou A) Ea) 34 93 23 83 54 48 21 56 83 93	oma 710 3 322 -52 510 10 189 -46 732 Cycles	r Pro ix 5 3 0 0 0 9 5 2 to fa	posec 9 (((((((((((((((((((d $\sqrt[6]{(\epsilon_a)}$).443).154).282 0.174).271).069).141 0.142).430 (N _f)	
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles	N S _a (M 500 100 280 -280 320 40 140 -240 500 Neu σ _m	otch Pa)))))))))))))))))))	σ_r σ_r 69 -1 30 -5 50 -4 7 5 (ϵ_a)	stress-s Neuber nax P P6 I I7 D D3 I 22 D D3 I B2 I 69 I I4 E-F Gm I	stra er's % 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	(ϵ_a) (ϵ_a) 506 218 346 138 312 112 184 103 487 487 487 487 46	SAE1 E-F σma 740 18 363 -550 520 -555 159 -492 743 Pro σm	141 Plast x)))) 2 3 . Me	A2 Steric (FEA 9%((0.3) 0.0% 0.22 -0.1 0.22 0.0% 0.12 -0.1 0.33 ethod	el rou () () () () () () () () () ()	σma σma 710 3 32: -52 510 10 189 -46 732 Cycles cuber	r Pro ix 5 3 0 0 0 5 2 2 to fa FE	posec 9 ((((((((((((((((((($\frac{1}{\sqrt{6}(\epsilon_{a})}$ $\frac{1}$	
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1	N S _a (M 500 100 280 -280 320 40 140 -240 500 Neu σ _m 87	otch Pa)))))))))))))))))))	σ_r σ_r 69 -1 30 -5 50 -4 7 6 (ϵ_a) 22	stress-sNeubernax 96 17 96 17 03 22 03 3826914E-F (F σ_m 124	stra 2 * 's % 0.1 0.2 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.2 Plass FEA 9 ()	in for (ϵ_a) 506 218 346 138 312 112 184 103 487 ϵ_A) δ_0 (ϵ_a) 0.283	SAE1 E-F σma 740 18 363 -550 520 -551 742 Pro σm 98	141) Plast x)))) 2 ; . Me	A2 Ste ic (FEA %(0) 0.3 0.09 0.22 -0.1 0.22 0.04 0.12 -0.1 0.33 ethod $\frac{1}{6}(\epsilon_a)$ 0.3	el rou A) Ea) 34 93 23 83 54 48 21 56 33 Ne 25	σma σma 710 3 323 -52 510 100 189 -46 732 Cycles suber 5300	r Pro ix 5 3 0 0 5 5 2 to fa FE 47(posec 9 ((((((((((((((((((($\frac{1}{\sqrt{6(\epsilon_a)}}$).443).154).282 0.174).271).069).141 0.142).430 (N _f) Pro. 35000	
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	otch Pa)))))))))))))))))))	σ_r σ_r 69 -1 30 -5 50 18 -4 7 5 ϵ_a 22 64	stress-s Neube nax $\overline{}$ $$	stra er's % 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(ϵ_a) (ϵ_a) 506 218 346 138 312 112 184 103 487 stic Λ) $\frac{\sqrt{6}}{(\epsilon_a)}$ 0.283 0.065	SAE1 E-F σma 740 18 363 -550 520 -550 520 -550 743 Pro σm 98 160	141 Plast x)))) 2 2 3 . Me	A2 Ste ic (FEA %(e 0.3 0.0 0.2 -0.1 0.2 0.0 0.1 -0.1 0.3 ethod $\frac{1}{6}(\epsilon_a)$ 0.3 0.0 64	el rou () () () () () () () () () ()	σma σma 710 323 -52 510 100 189 -46 732 Cycles suber 5300 ∞	r Pro ix 5 3 0 0 0 5 5 2 to fa FE 47(0 0	posec 9 ((((((((((((((((((($\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Reversal 1 2 3 4 5 6 7 8 9 Rainflow cycles 1 2 3	$\begin{array}{c} N \\ S_a (M) \\ 500 \\ 100 \\ 280 \\ -280 \\ 320 \\ 40 \\ 140 \\ -240 \\ 500 \\ \hline \\ Neu \\ \sigma_m \\ 87 \\ 143 \\ 17 \\ \end{array}$	otch Pa)))))))))))))))))))	σ_r σ_r 69 -1 30 -5 50 -4 7 64 07	stress-s Neuber nax 26 17 203 22 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 03 22 14 22 03 23 24 03 24 172 14 14	stra % 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(ϵ_a) (ϵ_a) 506 218 346 138 312 112 184 103 487 ϕ (ϵ_a) 0.283 0.065 0.205	SAE1 E-F oma 740 18 362 -550 520 -555 159 -492 742 743 Pro om 98 160 23	141) Plast x))))) 2 3 . Me 9 ((((A2 Ste ic (FEA %(e 0.3 0.0^{9} 0.2 -0.1 0.2 0.0^{4} 0.12 -0.1 0.33 ethod $\%(\epsilon_{a})$ 0.3 0.064 0.206	el rou A) Ea) B4 D3 C3 B3 C3 C4 C4 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	σ_{ma} σ_{ma} 716 3 716 3 322 -52 510 100 189 -46 732 Cycles suber 300 ∞ 00000	r Pro 5 3 0 0 5 5 2 to fa FE 47(0 620	posed () () () () () () () () () () () () ()	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

Table 23 Results Obtained from SAE1141"A2" under Variable Amplitudes

Figure 98 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141V

Figure 99 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141V

Figure 100 Cycles to Failure vs Strain Range and Mean Stress for SAE1141V

Figure 101 Cycles to Failure vs Strain Range and Mean Stress for SAE1141V

Figure 102 Notch Root Strain Amplitude vs Reversals for Flat Plate of RQC-100

Figure 103 Notch Root Strain Amplitude vs Reversals for Round Bar of RQC-100

Figure 104 Cycles to Failure vs Strain Range and Mean Stress for RQC-100 Flat Plate

Figure 105 Cycles to Failure vs Strain Range and Mean Stress for RQC-100 Round Bar

Figure 106 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1038

Figure 107 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1038

Figure 108 Cycles to Failure vs Strain Range and Mean Stress for SAE1038 Flat Plate

Figure 109 Cycles to Failure vs Strain Range and Mean Stress forSAE1038 Round Bar

Figure 110 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1050M

Figure 111 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1050M

Figure 112 Cycles to Failure vs Strain Range and Mean Stress for SAE1050M Flat Plate

Figure 113 Cycles to Failure vs Strain Range and Mean Stress forSAE1050M Round Bar

Figure 114 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1117

Figure 115 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1117

Figure 116 Cycles to Failure vs Strain Range and Mean Stress for SAE1117 Flat Plate

Figure 117 Cycles to Failure vs Strain Range and Mean Stress for SAE1117 Round Bar

Figure 118 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE15V24

Figure 119 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE15V24

Figure 120 Cycles to Failure vs Strain Range and Mean Stress for SAE15V24 Flat Plate

Figure 121 Cycles to Failure vs Strain Range and Mean Stress for SAE15V24 Round Bar

Figure 122 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1141Nb

Figure 123 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1141Nb

Figure 124 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Flat Plate

Figure 125 Cycles to Failure vs Strain Range and Mean Stress for SAE1141Nb Round

Bar

Figure 126 Notch Root Strain Amplitude vs Reversals for Flat Plate of SAE1045

Figure 127 Notch Root Strain Amplitude vs Reversals for Round Bar of SAE1045

165

م للاستشارات

Figure 128 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Flat Plate

Figure 129 Cycles to Failure vs Strain Range and Mean Stress for SAE1045 Round Bar

Figure 132 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 Flat Plate

Figure 133 Cycles to Failure vs Strain Range and Mean Stress for SAE1141 Round Bar

Figure 134 Hysteresis loops for RQC-100 Flat Plate

Figure 135 Hysteresis Loops for SAE1141V Flat Plate

Figure 136 Hysteresis loop for SAE1050M Flat Plate

9 APPENDIX C

Fatigue test machines

Fatigue test machines may be classified based on different view-points such as; purpose of the test, type of stressing, operation characteristics, and type of load.

There is another classification for fatigue testing machines based on the purpose of the machine as [74]:

- 1. Machines for general purpose.
- 2. Machines for special purpose.
- 3. Equipments for testing parts and assemblies.

Figure 137 appendix C, schematically shows a rotating bending machine which produces a non-uniform bending moment along the specimen length. The other type of rotating bending machine is shown in Figure 138 appendix C, in this case a uniform bending moment along the test specimen. In both cases the load is stay constant regardless the changes in the material mechanical properties or crack initiation and propagation. This type of machines is called "constant load amplitude machines".

Figure 139 appendix C, schematically shows a constant deflection amplitude cantilever bending machine, where a nonuniform bending moment is produced along the specimen, the load amplitude changes as the material mechanical properties changes, it increases as material harden and decreases as material soften or crack growth.

Axial loaded fatigue test machine is schematically shown in Figure 140 appendix C, this kind of machines is capable of applying both mean and alternating axial loads.

There are different types of machines have been designed over the years. The most important contribution of fatigue testing has been the closed-loop Servohydraulic test system [1], a modern Servohydraulic test system utilizing its own personal computer is shown in Figure 141 appendix C. The operational principal for this kind of machines is

based on generation of input signal of load, strain, or displacement using a function generator and applying this input through a hydraulic actuator, measuring the specimen response through a load cell, a clip gage or a linear variable differential transducer (LVDT), and comparing this with the specific input. The test data outputs are processed by a personal computer, the test frequency usually ranges from mHz to kHz.

These systems are capable of perform different types of tests, constant or variable amplitude, strain, displacement and stress intensity factor.

To perform a fatigue test a standard method should be followed. Standard fatigue test methods and procedures for metals are available from ASTM [4]. The International Organization for Standardization (ISO) draft standards on fatigue testing of metals are available through the ISO, Geneva, Switzerland.

Fatigue Test Specimens

There are many types and shapes of fatigue test specimens, Figure 142 appendix C, shows the specimens used to obtain total fatigue life, in this case no differentiation between crack nucleation and crack propagation. The surface of specimen has to be finely polished to minimize the surface roughness effects.

Specimen (a) is used for rotating bending test; specimen (b) and (c) are used for axial fatigue test. Specimen (d) for axial or bending test circumferential groove usually used to study the effect of stress concentration. Specimen (e) is a cantilever flat sheet specimen. Specimens (g) to (j) are used for the study of fracture mechanics to study crack growth mechanisms in this case each specimen has a thin slit, notch, or groove at the middle with a very small root radius. The notched samples are subjected to a cyclic stress at a low stress intensity factor range to form a small fatigue crack at the root radius, then a real fatigue test can be applied.

Figure 137 Nonuniform bending moment machine

Figure 138 Uniform bending moment machine

Figure 139 Constant deflection amplitude cantilever bending machine

Figure 140 Axial loaded fatigue test machine

Figure 141 Closed-loop Servohydraulic test system including personal computer [74].

Figure 142 different types of fatigue test specimens [1].

10 REFERENCES

- R. I. Stephens, A. Fatemi, R. R. Stephens and H. O. Fuchs, Metal Fatigue in Engineering, 2nd ed., New york, NY: John Wiley and Sons Inc., 2000.
- [2] C. H. R, Mechanics of Materials, 7th ed., Pearson Prentic Hall, New Jersey, 2008.
- [3] K. Serope and R. Steven, Manufacturing Engineering and Technology, New Jersey: Pearson Prentic Hall Inc, 2006.
- [4] M. J, "Cyclic plastic strain energy and fatigue of metals," *International Friction damping and Cyclic Plasticity*, p. 45, 1945.
- [5] R. W. Langdraf and T. Endo, "Determination of cyclic stress-strain curve," *Journal of material science and engineering*, vol. 4, pp. 176-188, 1969.
- [6] A. B. Juli, J. C. Jess and L. H. James, Fundamentals of metal fatigue analysis, Englewood Cliff, New Jersey, 1990.
- [7] H. B. O, "The exponential law of endurance tests," *Proc. ASTM*, vol. 10, p. 625, 1910.
- [8] M. Roessle, A. Fatemi and A. Kosrovaneh, "Variation in cyclic deformation and strain-controlled fatigue properties using different curve fitting and measurement techniques," *SAE*, pp. 1-8, 1999.
- [9] J. H. Ong, "An evaluation of existing methods for the prediction of axial fatigue life from tensile data.," *International journal of fatigue*, vol. 15(1), pp. 9-13, 1993.
- [10] S. M. S and R. H. G, "Practical implementation of double linear damage," Int. J. fract., vol. 17(2), p. 169, 1981.
- [11] N. S. K, W. P and H. T. T, "A stress-strain function for the fatigue of metals," *Journal of material science and engineering*, vol. 5, p. 169, 1970.
- [12] D. P. Walter, C. Karin and E. P. Joel, Peterson's Stress Concentration Factors, 2nd ed., Wiley, John & Sons, Incorporated, 1997, p. 544.
- [13] D. P. Walter and F. P. Deborah, Stress Concentration Factor, 3rd ed., John Wiley & Sons, 2008, p. 522.

- [14] M. Mitchell, "Fundamentals of modern fatigue analysis for design," American Society for Metals, pp. 385-437, 1979.
- [15] M. Roessle and A. Fatemi, "Strain-controlled fatigue properties of steels and some simple approximations," *International journal of fatigue*, vol. 22, pp. 495-511, 2000.
- [16] J. A. Baumel and T. Seeger, Material data for cyclic loading, Amesterdam: Elsevier Science, 1990.
- [17] JSMS, "Data book on fatigue strength of metallic materials," *Society of materials science and engineering*, Vols. 1(2,3), 1998.
- [18] S. L. Kwang and H. S. Ji, "Estimation methods for strain-life fatigue properties from hardness," *International Journal of fatigue*, vol. 28, pp. 386-400, 2006.
- [19] S. S. Manson, M. H. Hirschberg and R. W. Smith, "Fatigue behavior of materials under cycling in low and intermediate life range," *Technical Note D-1574*, 1963.
- [20] Z. L. Zang, Li, J and Q. Sun, "Two parameters describing cyclic hardening/softening behavior of metallic materials," *Journal of materials engineering*, vol. 18, pp. 237-244, 2009.
- [21] Z. P. Zhang, Y. J. Qiao, C. Li and J. Li, "Theoretical estimation to the cyclic strength coefficient and cyclic strain-hardening exponent for metallic materials," *Journal of materials engineering*, vol. 18, pp. 245-254, 2009.
- [22] R. Basan, M. franulovic and H. S. Smokvina, "Estimation of cyclic strain curves for low-alloy steel from hardness," *Journal for theory and practice in metallurgy*, vol. 49, pp. 83-86, 2010.
- [23] J. Li, Q. Sun, Z. Zhang and Y. Qiao, "Theoritical estimation to the cyclic yield strength and fatigue limit for alloy steel," *Mechanical research communications*, vol. 36, pp. 316-321, 2009.
- [24] American Iron and Steel Institute, "Bar Steel Fatigue Database," 2015. [Online].Available: www.barsteelfatigue.autosteel.org. [Accessed 2012].
- [25] Society of Automotive Engineering, "Technical Report on Low Cycle Fatigue Properties Ferrous and Non-Ferrous," SAEJ1099, 2002.

- [26] J. Morrow, "Cyclic plastic strain energy and fatigue of metals, internal friction, damping and cyclic plasticity," *American Society for testing and materials*, pp. 45-87, 1964.
- [27] S. Manson, "Fatigue: a complex subject-some simple approximation.," Society of experimental stress analysis, Cleveland, 1965.
- [28] D. Raske and J. Morrow, "Mechanics of materials in low cycle fatigue testing," American Society for Testing and Materials, Philadelphia, 1969.
- [29] M. Mitchell, D. Socie and E. Caulfield, "Fundamentals of modern fatigue analysis," University of Illinois, 1977.
- [30] U. Muralidharan and S. Manson, "Modified universal slopes equation for estimation of fatigue characteristics," *Journal of Engineering Materials and Technology*, pp. 55-58, 1988.
- [31] J. Ong, "An improved technique for the prediction of axial fatigue life from tensile data," *International Journal of Fatigue*, pp. 213-219, 1993.
- [32] M. Meggiolaro and J. Castro, "Statistical evaluation of strain-life fatigue crack initiation prediction," *International Journal of Fatigue*, vol. 26, pp. 463-476, 2004.
- [33] J. Park and J. Song, "Detailed evaluation of methods for estimation of fatigue properties," *International Journal of Fatigue*, vol. 17, pp. 365-373, 1995.
- [34] W. Jeon and J. Song, "An expert system for estimation of fatigue properties of metallic materials," *International Journal of Fatigue*, vol. 24, pp. 685-698, 2002.
- [35] K. kim, X. Chen, C. Han and H. Lee, "estimation methods for fatigue properties of steels under axial and torsional loading," *International Journal of Fatigue*, vol. 24, pp. 783-793, 2002.
- [36] H. Neuber, "Theory of stress concentration shear-strained of prismatical bodies with arbitrary non-linear stress-strain law," *Journal of applied mechanics*, vol. 28, pp. 544-550, 1961.
- [37] T. H. Topper, R. M. Wetzel and J. Morrow, "Neuber's rule applied to fatigue of notched specimens," *Journal of Materials*, vol. 4, pp. 200-209, 1969.

- [38] J. Sharpe, N. W and K. C. Wang, "Evaluation of a modified monotonic Neuber relation," *Journal of Engineering Materials and Technology*, vol. 113, pp. 1-8, 1991.
- [39] J. Sharpe, N. W, C. H. Yang and R. L. Tregoning, "An Evaluation of the Neuber and Glinka relations for monotonic loading," *Journal of Applied Mechanics*, vol. 59, pp. 50-56, 1992.
- [40] J. Sharpe and N. W, "Elasto-plastic stress and strain concentrations," *Journal of Engineering Materials and Technology*, vol. 117, pp. 1-7, 1995.
- [41] S. M. Tipton, "Review of the development and use of Neuber's rule for failure analysis," in SAE Trans., Sec5, 1991.
- [42] N. E. Dowling, W. R. Brose and W. K. Wilson, "Notched member fatigue life prediction by local strain approach," *Advances in Mechanical Engineering*, vol. 6, pp. 55-84, 1977.
- [43] K. Molski and G. Glinka, "A method of elastic-plastic stress and strain calculation at a notch root," *Journal of material science and engineering*, pp. 93-100, 1981.
- [44] G. Glinka, "Energy density approach to calculation of inelastic strain-stress near notches and cracks," *Engineering fracture mechanics*, vol. 22(3), pp. 485-508, 1985.
- [45] M. Hoffmann and T. Seeger, "A generalized method for estimating multiaxial elastic-plastic notch stresses and strains, part 1," *Journal of Engineering Materials and Technology*, vol. 107, pp. 250-254, 1985.
- [46] M. Hoffmann and T. Seeger, "A generalized method for estimating multiaxial elastic-plastic notch stresses and strains, part2," *Journal of Engineering Materials and Technology*, vol. 107, pp. 255-260, 1985.
- [47] M. N. James, C. Dimitrious and H. D. Chandler, "Low cycle fatigue lives of notched components," *Fatigue & Fracture of Engineering Materials & Structures*, vol. 12, pp. 213-225, 1989.

- [48] A. Gowhari, R. A and S. J. Hardy, "Low cycle fatigue life predictions for hollow tubes with axially loaded axisymmetric internal projections," *Journal of Strain Analysis*, vol. 26, pp. 133-146, 1991.
- [49] J. Sharpe and N. W, "An interferometric strain/displacement measurment system.," *National and Space Administration*, 1989.
- [50] A. Tashkinov and M. Filatov, "Improved energy density method for inelastic notch tip strain calculation and its application for pressure vessel and piping design," *Journal of Pressure Vessels Piping*, vol. 53, pp. 183-194, 1993.
- [51] Y. L. Lee, Y. J. Chiang and H. H. Wong, "A constitutive model for estimating multiaxial notch strains," *Journal of Engineering Materials Technology*, vol. 117, pp. 33-40, 1995.
- [52] B. A and G. G, "Elastic-plastic stress-strain analysis of notches under nonproportional loading," *International conference of Biaxial/Multiaxial Fatigue and Fracture*, 1995.
- [53] Z. Zeng and A. Fatemi, "Elasto-plastic stress and strain behavior at notch roots under monotonic and cyclic loadings," *Journal of Strain Analysis*, vol. 36(3), pp. 287-300, 2001.
- [54] M. Stevan, "Fatigue life analysis of aircraft structural components," *Military Technical Institute (VTI), Ratka Resanvica*, pp. 15-21, 2005.
- [55] L. Samuelsson, "The supper-Neuber technique for correction on linear elastic FE results," in *International Congress of Aeronautical Sciences*, 2008.
- [56] H. Tanweer, M. Mujeebuddin and A. Zeesh, "Prediction of elastic-plastic behaviour of structures at notches," *Journal of Engineering Technology*, vol. 31, no. 3, 2012.
- [57] I. D. o. M. Engineering, "nptel," 2013. [Online]. Available: http://www.nptel.in.[Accessed 2015].
- [58] "Metal Yield," 2015. [Online]. Available: www.wikimedia.org. [Accessed 2012].
- [59] "wikipedia," 2012. [Online]. Available: http://en.wikipedia.org/wiki/Von_Mises_yield_criterion. [Accessed 2015].

- [60] P. W, "A New Method of Analysing Stresses and Strains in Work-Hardening Plastic Solids.," *Journal of applied mechanics*, vol. 23, pp. 493-496, 1956.
- [61] F. C and A. P, "A Mathematical Representation of the Multiaxial Bauschinger Effect," *Materials at High Temperature*, vol. 24(1), pp. 1-26, 1966.
- [62] M. Z, "On the description of anisotropic work-hardening," *Journal of mechanics and physics of solids*, vol. 15, pp. 163-175, 1967.
- [63] M. Z, "An atempt to describe the behavior of metals undercyclic loads using a more general work hardening model," *Acta Mechanica*, vol. 7, pp. 199-212, 1969.
- [64] Y. S. Garud, "A new approach to the evaluation of fatigue under multiaxial loadings," *Journal of engineering material and technology*, vol. 103, pp. 118-125, 1981.
- [65] C. C. Chu, "A three dimentional model of anisotropic hardening in metals and its application to the sheet metal forming," *journal of mechanics and physics of solids*, vol. 32, pp. 197-212, 1984.
- [66] N. Ohno and J. D. Wang, "Two Equivalent Forms of Nonlinear Kinematic Hardening Application to Nonisothermal Plastcity," *International Journal of Plastcity*, vol. 7, p. 637, 1991.
- [67] N. Ohno and J. D. Wang, "Kinematic Hardening Rules With Critical State of Dynamic Recovery, Part I: Formulation and Basic Feature for Ratcheting Behavior.," *International Journal of Plasticity*, vol. 9, pp. 375-390, 1993.
- [68] J. L. Chaboche, "On Some Modifications of Kinematic Hardening to Improve the Description of ratcheting Effect," *International Journal of Plastcity*, vol. 7, pp. 661-678, 1991.
- [69] Simulia, "ABAQUS analysis user's manual version 6.14," 2014. [Online].[Accessed 2014].
- [70] Simulia, "fe-safe, Introduction to fe-safe," Simulia, Cincinnati (Mason), OH, 2015.
- [71] Bauccio, Ed., ASM metals Reference book, 3rd ed., Material Park, OH: ASM International, 1993.

- [72] A. B. o. A. Standards, Metal test methods and analytical procedures, West Conshohocken, PA: ASTM, 2000.
- [73] C. R. Calladine, "Rapid method for estimating the greatest stress in a structure subjected to creep," *Journal of Mechanical Engineering*, vol. 178, pp. 198-206, 1964.
- [74] W. W, Fatigue testing and analysis of results, New York: Pergamon Press, 1961.
- [75] G. J. L, "The statistical treatment of fatigue experiments," *Elsvier Science*, 1964.
- [76] "Hard banding solution," 2015. [Online]. Available: www.hardbandingsolution.com. [Accessed 2012].

